
•• 

SHAPE MAKER™ 
AN ON-SCREEN EDITOR FOR DEFINING 
GRAPHICS FOR THE EXIDY SORCERER 

by Don Ursem 

A 
product 

of 
~ QUJIUTY SOFTWJIRE 

Loading the Program 
Command Usage . . 
Single Character Commands 
On-Screen Buffer Commands . 
Cursor Mode Commands . 
Constructing Large Shapes 
Saving Shapes on Tape . . 

. page 

. page 

. page 

. page 

. page 

. page 

. page 

. page 

2 
2 
3 
5 
7 
8 
9 
9 Creating Shapes with BASIC Data Statements 

Example BASIC Programs Using Shapes . page 10 
Command Summary 

Published by Quality Software 
01979 by Don Ursem. All rights reserved. 

. back cover 

No part of this publication may be reproduced without prior written consent. 



LOADING INSTRUCTIONS 

SHAPE MAKER is a BASIC program and is written to work on any memory 
size Sorcerer. To load the tape, follow these steps: 

1. Be sure the BASIC ROM PAC is inserted before turning on the Sorcerer. 

2. Ready the tape recorder. High tone settings and about 75% volume are 
usually required for the Sorcerer. 

3. Turn on the Sorcerer and load and execute the program as follows (infor· 
mation from the computer is in italics): 

READY 

CLOAD SHAPE 

FOUND SHAPE -ETC. 

LOADING -ETC. 

READY 

RUN 

4. We recommend that you make a working copy of SHAPE MAKER on 
your own recorder and use the original copy as a backup. 

COMMAND USAGE 
Commands are entered when the "COMMAND?" prompt appears on the 

screen. The exceptions to this are the "#" command and the cursor control 
commands. All commands are one·word commands and are transmitted by 
pressing the RETURN key, except in the case of cursor control commands when 
no RETURN is required. Both upper and lower case letters are accepted. Many 
commands can be abbreviated to one-letter commands. If at any time an in­
correct command is input, it will be erased and the "COMMAND?" prompt 
will reappear. 

The commands have been divided into three groups: 

1. Single Character Commands - these commands affect only the single­
character work area. 

2. On-Screen Buffer Commands -these commands affect at least one of the 
ten on-screen character buffers. 

3. Cursor Control Commands - these commands are for use when in the 
cursor control mode and affect the on-screen buffer area. 

Typing a CTRL-C when the "COMMAND?" prompt is on the screen will 
exit out of the program but won't disturb the symbols in character memory. 
BYE then exits to the Monitor for dumping memory or saving to tape. PP re­
turns control to BASIC without disturbing either SHAPE MAKER or character 
memory. Do not press RESET or you will lose the program and half of the pro­
grammable characters. The CLEAR key also destroys half of the programmable 
characters (#128-#191 ), but if you don't need these characters the CLEAR key 
is an acceptable way to clear the buffer area and workspace (type 
CLEAR, RETURN). 

-2-



SINGLE CHARACTER COMMANDS 

n[pattem] example: 3xx xx or 
311011 

This command modifies one line (line n) of the workspace area. Type the 
line number followed immediately by a pattern of zero to eight characters. 

[pattern] can be made up of D's, 1 's, x's, or blanks (spaces) where 1 or x 
means this is where a white dot is desired and 0 or blank means this is where no 
light (a black dot) is desired. If less than eight characters are input, the pattern 
will be automatically filled in with blanks (black). A null pattern will clear the 
line (all black). 

Any single special character can be built quickly using the n [pattern] 
command. Enter the following patterns to build the Greek letter Omega: 

100011100 
200100010 
301000001 
401000001 
500100010 
600010100 
701100011 
800000000 

SAVE example: S 

This command places the workspace contents into a programmable character 
that you choose. TypeS and RETURN. The character will be scanned, converted 
into hexadecimal, and displayed as a normal size character. Then you will be 
prompted to select a graphic or shift-graphic key. Now type shift-graphic 1. The 
character in the workspace is stored in the location where the shift-graphic 
1 character is defined, and that letter will print every time you press that key. 
Try typing a few shift-graphic 1 characters, and you will see this. When you press 
RETURN, these characters will be ignored and the "COMMAND?" prompt 
will return. 

You may also respond to the "SELECT A KEY" prompt with the "#" 
command, which is described below. The "#" command allows you to assign 
the decimal character code (the code that is used in the CHR$ function). 

RETRIEVE example: R 

This command retrieves a character already defined and places it in the 
workspace. It is the opposite of the SAVE command. You will be prompted to 
select the key you wish to have the program retrieve from memory. Any key 
may be selected, including the CTR L key characters which cannn+ l)e printed 
with the CHR$ function. 

You may also respond to the "RETRIEVE WHICH KEY" prompt with the 
"#" command, which is described below. The "#" command allows you to 
select the character by its decimal character code (the code that is used in the 
CHR$ function). 

-3-



DISPLAY example: D 

This command displays, in decimal format, the eight bytes that define a 
selected character that has already been created. It also gives, in decimal format, 
the addresses where the definition of the selected character is stored and the 
decimal character code for the selected character. You will be prompted to 
select the key that you wish this information for. Try typing shift-graphic 1 
following a D command. The current character for this key is shown along 
with its CHR$ number (192). its address locations (-512 to -505) and 
the eight bytes that define the character. The primary use of the DISPLAY 
command is to obtain the information necessary to create user-defined 
characters in a BASIC program. See the section of this booklet entitled 
"Constructing Shapes With BASIC Data Statements". 

You may also respond to the "DISPLAY WHICH KEY?" prompt with the 
"#"command, which is described below. The "#"command allows you to select 
the character by its decimal character code (the code that is used in the CH R$ 
function). 

INVERT example: I 

This command inverts or "reverses out" the pattern currently in the work­
space. That is, white dots are changed to black dots and black dots are changed 
to white dots. Use the RETRIEVE command to pull the letter "A" into the 
workspace, then type I and press RETURN. A black letter A on a white back­
ground will be created in the workspace. 

This command is also useful for two-player game programs where you need 
equivalent symbols for the "white" and "black" players. Once you build one 
set of symbols, the INVERT command quickly generates the other. 

FLIP example: F 

This command flips the pattern in the workspace upside down. For an 
application of the FLIP command, see the description of the TURN command. 

TURN example: T 
This command reverses the pattern in the workspace right to left. The 

leftmost column becomes the rightmost column, etc. The TURN and FLIP 
commands can be used to save time in forming characters, as demonstrated by 
the following example: 

Type these values into the workspace: 

1xxxx 
2xxx 
3x XX 
4 XX 
5 xxxx 
6 XX 
7 X 

8 

This forms an arrow pointing northwest. Arrows in the three other diagonal 
directions can be formed quickly. Enter the FLIP command and an arrow point-

-4-



ing southwest is formed. Then enter TURN and an arrow pointing southeast is 
formed. Enter the FLIP command again and an arrow pointing northeast 
is formed. 

NEW example: N 

This command clears the wc;>rkspace (makes all dots black). 

# example: # 

This command can be entered only when one of three prompts is on the 
screen: "SELECT A KEY", "RETRIEVE WHICH KEY?" or "DISPLAY WHICH 
KEY?". It is used when you prefer to enter the decimal character code (the code 
that is used in the CHR$ function) instead of selecting a key on the keyboard. 
Entering #will cause the prompt to be modified to ask for the ASCII number. 
Enter the decimal character code. If you attempt to SAVE into a non­
programmable character code, you will get the message, "USE ONLY GRAPHIC 
OR GRAPHIC SHIFT CHARACTERS", i.e., codes greater than 127. The 
RETRIEVE and DISPLAY commands can access all character codes. 

ON-SCREEN BUFFER COMMANDS 
There is an on-screen buffer area (the upper left-hand portion of the screen) 

where the representation of ten characters can be displayed simultaneously. In 
data processing terms a "buffer" is a temporary "hold" area for storing data 
that is still to be worked on. The ten buffers allow you to store one or more 
characters on the screen while building another character in the workspace. The 
characters are displayed in two rows of five characters each. Each character 
representation is called a buffer and is identified by a number as follows: 

1 2 3 4 5 

6 7 8 9 10 

There is a special set of commands that allow characters to be moved in and out 
of buffers and in and out of memory, and to modify the entire buffer area. 
Before studying the On-screen Buffer Commands, exit the program and enter 
RUN 8000 to see a shape displayed in the buffer area. 

-5-



PUTb example: P3 

This command puts the current workspace into buffer number b. Whatever 
was previously in buffer b is lost. Enter the command P1 and the workspace will 
be reproduced on the screen in buffer number one. 

GETb example: G10 

This command gets the character representation in buffer band loads it into 
the workspace. Whatever was previously in the workspace is lost. 

SAVE• example: S* 

This command saves all ten characters represented in the buffer area into the } 
character codes #245 through #254 (note: the Single Character SAVE Command 
uses character code #255, and the last character SAVEd will always be stored in 
character #255 as well as wherever it was supposed to be SAVEd). The keys that 
are tied to codes #245 to #254 are shift-graphic keys on the numeric keypad 
(~. 4, 6, x, 1 and 2, 3, +, 0, .). 

If you have a shape in the buffers, enter S* and watch as the program loads 
each buffer, one by one, into the workspace and then stores it in memory. A 
counter is displayed to indicate which buffer SHAPE MAKER is working on. 

This command leaves an extraneous "SELECT A KEY" prompt on the 
screen. Simply press RETURN to get rid of this prompt and return to the 
"COMMAND?" prompt. 

FLIP• example: F* 

This command flips the entire buffer area upside down. The top of buffer #1 
becomes the bottom of buffer #6, etc. The workspace is not affected. 

TURN• example: T* 

This command turns the entire buffer area from left to right. A left facing 
figure will turn and face right. The workspace is not affected. The usefulness of 
this command can be seen by exiting the program, entering RUN 8000, and 
then entering the T* command. 

INVERT• example: I* 

This command inverts or "reverses out" the entire buffer area. All white 
dots become black dots and black dots become white dots. The workspace is 
is not affected. 

P• example: P* 

This command puts the workspace contents into all ten buffers. The primary 
use of this command is for clearing the buffers by first clearing the workspace 
with a NEW command and then entering P*. Or the buffers can be set to all 
white by successive N, I, and P* commands. 

RETRIEVE• example: R* 

This command retrieves the ten characters represented by character codes 

-6-



#245-#254 and stores them in the ten buffers. It is the opposite of the SAVE* 
command. Whatever was in the on-screen buffers before the command was 
executed is lost. 

CURSOR MODE COMMANDS 

If you have learned how to use SHAPE MAKER's Single Character 
Commands to construct multi-character shapes - great! But building your own 
multi-character shapes character-by-character gets tricky if you want to change 
and experiment. SHAPE MAKER's cursor control mode makes it much easier. 
With this, you can move the cursor around right on the screen, drawing or 
correcting as you go. The whole ten-character buffer area becomes one large 
sketch pad area for true graphic editing. 

CTRL-P example: hold down CTRL, press P 

This command works like an on/off switch to go in and out of the cursor 
control mode. When in the cursor control mode, only Cursor Mode Commands 
are recognized. A CTR L-P when in the cursor control mode causes exit from 
that mode and returns the "COMMAND?" prompt to the screen. The RETURN 
key is not needed to enter Cursor Mode Commands, except following the 
CTR L-P to get into the cursor control mode. After entering the cursor mode, 
the next command must be a direction (U, D, L, R) or the cursor mode will 
automatically exit. 

UP example: U 

This command sets the direction for the cursor to travel to up. The cursor 
becomes an up arrow but does not move. No dots are affected. The up arrow 
key may be used instead of aU. 

DOWN example: D 

This command sets the direction for the cursor to travel to down. The 
cursor becomes a down arrow but does not move. No dots are affected. The 
down arrow key may be used instead of a D. 

RIGHT example: R 

This command sets the direction for the cursor to travel to right. The cursor 
becomes a right arrow but does not move. No dots are affected. The right arrow 
key may be used instead of an R. 

LEFT example: L 

This command sets the direction for the cursor to travel to left. The cursor 
becomes a left arrow but does not move. No dots are affected. The left arrow 
key may be used instead of an L. 

-7-



MOVE example: space bar 

This command moves the cursor one position in the direction of the arrow 
but does not modify the dots in the pattern. 

ON example: X 

This command puts a white dot at the cursor position and moves the cursor 
one position in the direction of the arrow. The 1 key may be used instead 
of an X. 

OFF example: RUB 

This command puts a blank (black dot) at the cursor position and moves 
the cursor one position in the direction of the arrow. This is the RUB key, not 
shift-RUB. It is used to erase white dots. 

REPEAT example: REPEAT key 

This command is used to repeat the last command and is convenient because 
the key does not have to be released. It can be used for continuous spacing or 
line drawing. 

CONSTRUCTING LARGE SHAPES 

By now you have discovered how a shape that is two bytes high and five 
wide can be formed using SHAPE MAKER. In particular, if you saw the tank 
being built by executing RUN 8000, then you are aware of the graphic detail 
possible using the Sorcerer. Our tank is not a crude version of a tank that you 
might find on some computers. Ours is recognizable as a German 
Panzerkampfwagon IV Ausf F2 (1942), the main battle tank of Rommel's 
Afrika Korps. 

What about shapes larger than 2x5? You may want to design a chess piece 
three bytes high or a playing card eight bytes high. Given the 128 bytes available 
with the Sorcerer, it is possible to construct a shape with dimensions as great as 
8x 16 or 12x 1 0. For these larger pictures, the following is recommended: 

1. Use the cursor control mode to build one ten-byte section. 

2. GET and SAVE these ten characters one at a time into the top row of 
GRAPHIC keys 1, 2, 3, ... , 0. 

3. Use GET and PUT to move the content of buffers 6-10 into buffers 1-5. 

4. Use cursor control to build the next five characters in buffers 6-10. 

5. GET and SAVE these in the next five available GRAPHIC keys. 

6. Go back to step 3 and repeat the cycle until the entire shape is defined. 

For very large shapes, it helps to sketch the full pattern out on graph paper, to 
serve as a guide. 

-8-



SAVING SHAPES ON TAPE 

Dumping character sets to tape is a recommended procedure if you have 
many characters, an entire special alphabet, very large shapes, etc. To do this, 
stop the program with a CTR L-C and enter BYE to get into the Monitor. Set up 
your tape recorder and start the recording. Then type 

SAVE CHSET FCOO FFFF 
and press ENTER to save the 128 programmable character definitions on tape. 
After the SAVE is complete, type PP to get back to BASIC. The SHAPE 
MAKER program will still be there. 

Later, when you are ready to write your BASIC program that will use the 
characters you saved, get into the Monitor and load in the tape with the 
command LOAD CHSET. When the load is completed, reenter BASIC with PP. 
You are ready to write your BASIC program and test it using the previously 
defined graphics. 

When you have finished writing your BASIC program, we recommend that 
you make it the second file on the same tape cassette as your special character 
set. This way you can conveniently load both without having to leave BASIC. 
Just type 

CLOAD CHSET 
then when that load is complete, type 

CLOAD PROG 
where PROG is whatever your BASIC program is called. This works because the 
Sorcerer keeps track of what kind of file you're loading. The first file is not a 
BASIC file, so the CLOAD command loads it exactly as the Monitor LOAD 
command would do. And it gets loaded into non-BASIC memory, so the second 
CLOAD doesn't wipe it out. When you are reloading character sets from tape 
and then running a BASIC program, be careful that you don't clear the screen 
anywhere in the program, because this automatically resets the first 64 graphic 
characters back to their power-on default values. 

CREATING SHAPES WITH BASIC DATA STATEMENTS 
For BASIC programs that involve only a few symbols or small shapes, it 

may be more convenient to have the program itself POKE the character defini­
tions into memory rather than loading them in separately. The procedure used 
to do this is to include DATA statements in your BASIC program that contain·' 
the character definitions, and then design a FOR NEXT loop that POKEs the 
definitions into the correct spot in memory. 

As an example, review the description of the SAVE command on page 3, 
where we created a special character - the Greek letter Omega. Using the 
DISPLAY command for this character, which we stored in the graphic-shift 1 
key, we find that the decimal character code is #192, the memory location of 
the character definition is 23,34,65,65,34,20,99,0. From this information it is 
easy to write the BASIC statements necessary to reconstruct this character. 

10 FOR LOC=-512 to -505 
20 READ N: POKE LOC,N: NEXT LOC 
30 DATA 28,34,65,65,34,20,99,0 
40 PRINT CHR$(192) 

-9-



EXAMPLE BASIC PROGRAMS USING SHAPES 

The following two BASIC programs are given as examples of interesting ways 
in which the output of SHAPE MAKER can be used in your own BASIC 
programs. 

PROGRAM #1 · REVERSE GRAPHICS 

Although the Sorcerer does not come with reverse graphics (black letters on 
a white background), you can, with SHAPE MAKER's help, create a reverse 
graphics capability. 

1. Load SHAPE MAKER and use the R, I, and S commands to create in­
verse ASCII. Begin by retrieving character #32 (space), inverting it, and 
storing it as character #160. Continue through the retrieval of character 
#127, storing it in #255. This will take some time, even with SHAPE 
MAKER, but when you are done you can save your work and use it for 
all your programs. 

2. Exit SHAPE MAKER with CTRL·C and BYE, then save the graphics 
characters on tape as described in the previous section, "Saving Shapes 
on Tape". 

3. Return to BASIC, type NEW, and type in the following program: 

OCLEAR 128:REM TO AVOID OUT OF STRING SPACE ERRORS 
10 INPUTW$ 
20 GOSUB 1000:PRINTW$,B$ 
30 GOTO 10 

1000 REM SUBROUTINE TO CONVERT W$ TO B$ 
1010 B$=" ":REM INITIALIZE B$ TO NULL STRING 
1020 FOR X=1 TO LEN (W$):Y=ASC(MID$(W$,X)) 
1030 IF Y>31 and Y<128 THEN Y=Y+128 
1040 B$=B$+CHR$(Y): NEXT X 
1050 RETURN 

When you RUN this program, you will be prompted to enter a string, 
and the string will then be printed out in regular and inverse graphics. 

4. Notice that statements 1000 through 1050 make up a subroutine that 
can be used in any BASIC program. This subroutine, along with the 
character set that you saved on tape, gives you reverse graphics capability 
for all of your BASIC programs. 

PROGRAM #2- TANKITY TANK TANK 

RUN this program and our now familiar Panzer tank will come rolling on the 
screen and, with the help of its trusty cannon, clear the screen for you. This 
short routine will display the tank, move it, and fire its cannon, given that the 
set of bytes that define the tank's shape are loaded into the memory area for 
characters #245 to #254. 

-10-



9020 ST=245 
9030 FOR P=-2116 to -3900 STEP -1 :REM SCREEN LOCATION 
9040 FOR C=O to 4 :REM FIVE COLUMNS 
9050 POKE P+C,ST+C:POKE P+C+64,ST+C+5 :REM UPPER AND LOWER ROW 
9060 NEXT C 
9070 POKE P+C,32:POKE P+C+64,32 :REM BLANK TRAILING BYTES 
9080 IF RND (7) > .15 THEN 9100 :REM FIRE CANNON RANDOMLY 
9090 FOR I=P-1 TO P-20 STEP -1 :POKE 1,45:POKE 1,32:NEXT I 
9100 NEXT P 
9110 END 

If you study this program and understand how it works, then you will be 
well on your way to making effective use of the Sorcerer's graphics capability in 
your BASIC programs. By the way, this routine is included in the SHAPE 
MAKER program. Just exit the regular program with CTRL-C and type 
RUN 9000. 

Enjoy our other SORCERER software 

FASTGAMMON by Bob Christiansen. Our popular machine language backgammon 
game that started us in business. The computer plays against you and makes good 
moves instantaneously. Option to replay dice rolls from the previous game. An 
eight-page instruction booklet is included. $19.95 

PLOT by Vic Tolomei. Now Apple owners will be envious of how easy you can get 
good graphics on your SORCERER. PLOT includes both a super high resolution 
mode and a quick low resolution mode. Both are accessible from your BASIC pro­
grams using simple commands. Hi-res & lo-res examples included on tape. $14.95 

DEBUG by Bob Pierce. Debug machine language programs by stepping through one 
instruction at a time, with the option to execute CALLs completely in one step. Re­
locatable with several display options - can retain most video during execution. 
Multiple breakpoints. Modify memory and registers. $14.95 

Z-80 DISASSEMBLER by Vic Tolomei. Decode machine language programs, includ­
ing SORCERER'S monitor and ROM PACS, with this Z-80 Dissasembler written in 
BASIC. Instruction mode prints out standard Z-80 mnemonics. Or use ASCII mode 
which converts machine code to ASCII. $14.95 

MAGIC MAZE by Vic Tolomei. A challenging maze game. Ten levels of play. Hold­
ing your lantern, you wander through a maze trying to stay on the right path and 
avoid pitfalls. Automatic scoring tells you how good a pathfinder you are. $11.95 

SOFTWARE INTERNALS MANUAL FOR THE SORCERER by Vic Tolomei. A 
must for anyone writing software for the SORCERER. Seven chapters: Intra to 
Machine Language, Devices & Ports, The Monitor, Cassette Interface, BASIC 
structure, Video & Graphics. The Keyboard. Indexed. Includes diagrams and software 
routines. 64 pages. $14.95 

FOR LATEST RELEASES, WRITE FOR OUR CATALOG 

-11-



COMMAND SUMMARY 

FULL 
DESCRIPTION 

COMMAND EXAMPLE WHAT IT DOES PAGE 

n [pattern] 3xx xx or puts [pattern] on linen 3 
311011 of workspace 

SAVE s stores workspace into a 3 

" graphic or shift-graphic key ~ 

tlVJ 
RETRIEVE R retrieves a key into 3 

~Q workspace 

~~ DISPLAY D displays key content 4 
as BASIC data u::E INVERT I inverts workspace 4 ~); 

....:10 (reverse field) 
cu FLIP F flips workspace upside down 4 z 
;j TURN T turns workspace right to left 4 

NEW N clears the workspace 5 
# # ASCII reply to 'which 5 

key?' prompt 

PUTb P3 puts workspace contents 6 

" into buffer b 
~ GETb G10 gets workspace from buffer b 6 "' "-VJ S• S• saves all buffers into 6 ::Jo 
=~ characters 245-254 

Z;:.; F• F• flips all buffers as one 6 

~); T• T• turns all buffers as one 6 
"O I• I• inverts all buffers 6 
~u p. p. puts workspace into 6 

0 all buffers 
R• R• retrieves characters 6 

245-254 into buffers 

CTRL-P enter/exit cursor 7 

U or t 
control mode 

~ 
UP set travel direction to up 7 

Q DOWN D or~ set travel direction to down 7 
0 
); RIGHT Ror- set travel direction to right 7 

...:IVJ LEFT Lor- set travel direction to left 7 

~~ MOVE space move cursor in current 8 
direction without ~); modifying pattern g;:.; 

ON X or 1 puts a dot at the cursor 8 
"8 position and moves cursor 
0 in current direction 
~ OFF RUB erases a dot at the cursor 8 8 key position and moves cursor 

in current direction 
REPEAT REPEAT repeats last ON, OFF or 8 

key MOVE command 


