MICRO-80

P.O. BOX 213, GOODWOOD, S.A. 5034, AUSTRALIA. TELEPHONE (08) 211 7244 PRICE: AUS. $3.50; N.Z. $5.60; U.K. £2.10
Registered by Australia Post - Publication No. SB02207

VOo!. 4, Issue 4, November/Decernber 1983

AUSTRALIA ™S LUF

RER iRk R
s
IIIIIIIHIIII

AlISO 1N this Issue:

PROGRAMMING: Galactic Battles—Lewvel |
Peek, Poke and USR Track Racer—Peach
Statements Explained Sinus Adventure—Peach

Household Accounting—Peach
REVIEW/S: Yahtzee—Level Z
The Adventure System Boid Type for LP VIl—Level Z
The TRS-80 MC-10 Computer LVAR—Level /Z
GRAFX—Disk
SOFTWX/ARE: Space Utllity—Model 3
HI-RES Text—Colour Source Utility—Model 3
Killer Satellite—Colour Household Accounting—
Sirus Adventure—Colour Model 4

Track Racer—Peach Space Invaders—MC-10

*TRS-80 SYSTEMS8O <VIDEOGENIE
PMC-80 <*HITACHIPEACH
e TRS-80 COLOUR COMPUTEE

MOLYMERX

Australia’s broadest range of software
for TRS-80’s and SYSTEM 80’s

MOLYMERKX has the Australian distribution rights for literally hundreds of top
grade programs from American, Canadian and British publishers. From games to
utilities, from DOS’s to Databases, if it's top quality then MOLYMERX almost
certainly has it.

Now, MOLYMERKX is being distributed in Australia by MICRO-80. To help you
chose from the incredibly wide range of programs available, you may purchase
a MOLYMERKX catalogue. For only $3.00 you receive over 80 pages of what is virtually
an encyclopedia of ‘80 software plus regular updates for 12 months. The useful
information contained in this catalogue is worth many times its cost.

There are now generous BULK BUYING DISCOUNTS of 10% off list price for
single orders in excess of $500 or 15% for single orders in excess of $1,000. So
get together with your friends or User Group members to place a combined order
and save yourselves real $$9%.

EXPANSION INTERFACES FOR
SYSTEM 80 and TRS-80 COMPUTERS

MICRO-80’s new family of expansion interfaces for the System 80 and TRS-80 offer
unprecendented features and reliability including:

Up to 32K STATIC RAM : to ensure high noise immunity and reliability

Centronics Printer Port: The Systems 80 Expansion Interface has a double-decoded
port to respond to both port FD and memory address 37E8H, thus
overcoming one of the major incompatabilities with the TRS-80.

RS232 Communications Port: for communicating via modem or direct link to other
computers

Single Density Disk Controller: for complete compatability with all Disk Operating
Systems

Supports double-sided Disk Drives up to 80 tracks: with a suitable disk operating
system such as DOSPLUS, NEWDOS 80 or LDOS, the interface will support
single or double sided drives of 35-80 track capacity.

Economical double density: an economical, high quality double-density upgrade
will be released shortly to enable you to increase the capacity of your
disk drives by 80%.

Real time clock interrupt: provides software clock facility used by most DOS’s.

AVAILABLE MARCH 1984, price to be announced shortly. Demand is sure to be
heavy. Interfaces will be supplied on a first-come-first-served basis. To avoid
disappointment you should write in NOW to be included on the no-obligation
waiting list.

SYSTEM 80 PRINTER INTERFACE
$99 + $3.00 p&p

For those who wish to add a printer to their SYSTEM 80. MICRO-80’s new printer
interface provides the ideal solution. Double-decoded to both port FD and address
37E8H, this interface overcomes one of the major incompatabilities between the
SYSTEM 80 and the TRS-80. Price includes a Centronics printer cable. Operates
with Centronics compatible printers including GP-80 and GP-100.

Similar interface is also available for the TRS-80 $99.00 + $3.00 p&p

VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983) MICRO-80 PAGE 1

SOFTWARE
COLOUR COMPUTER
HI-RES TEXT wypev//fe, : 15 & 36
l

THE KILLER SATELLITE 15 & 23
i SIRIUS ADVENTURE 18 & 24
PEACH
TRACK RACER 15 & 38
REgg'l-T»‘(\)RRS'AL » SIRIUS ADVENTURE 18 & 21
WHAT YOU HAVE MISSED 2 HOUSEHOLD ACCOUNTING 16 & 19
INPUT/OUTPUT 13 TRS-80/SYSTEM 80
AUSTRALIA’'S CUP (L2/16K) 13 & 39
YAHT ZEE (L2/16K) 18 & 28
DEPARTMENTS
KALEIDOSCOPE (COLOUR COMP) 3 BOLD TYPE FOR LP VIl (L2/12K) 18 & 27
LVAR (L2/32K) 15 & 44
PEACH BOWL (HITACHI PEACH) 3
GRAFX (DISK 32K) 14 & 43
GROUP ONE (MODEL 1/SYSTEM 80) 3 SPAGE UTILITY (DISK/48K
FORM THREE (MODEL 3) ER o () 18 & 27
PROGRAMMING SOURCE UTILITY (MOD3/DISK) 14 & 46
MAKING USE OF PEEK, POKE & USR 5 HOUSEHOLD ACCOUNTING (MODEL 4) 16 & 31
SPACE INVADERS (TRS-80 MC-10) 18 & 26
REVIEWS NEXT MONTH’S ISSUE 47
THE ADVENTURE SYSTEM 10 CASSETTE/DISK EDITION INDEX 48
THE TRS-80 MC-10 COMPUTER 12 ORDER FORM 48

ABOUT MICRO-80
EDITOR: IAN VAGG

MICRO-80 is an international magazine devoted to the Tandy TRS-80 Model 1, Model Il and Colour microcomputers, the Dick
Smith System 80/Video Genie and the Hitachi Peach. It is available at the following prices:

12 Months Single Copy
MAGAZINE ONLY $ 36.00 $ 3.50
CASSETTE SUBSCRIPTION $ 96.00 $ 6.00
DISK SUBSCRIPTION $125.00 $10.00 (disk)

MICRO-80 is available in the United Kingdom from:
U.K. SUBSCRIPTION DEPT. 24 Woodhill Park, Pembury, Turnbridge Wells, KENT TN2 4NW

MAGAZINE ONLY £16.00 £1.50
CASSETTE SUBSCRIPTION £43.00 £N/A
DISK SUBSCRIPTION £75.00 £N/A

MICRO-80 is available in New Zealand from:
MICRO PROCESSOR SERVICES, 940A Columbo Street, CHRISTCHURCH 1 NZ. Ph. 62894

MAGAZINE ONLY NZ$ 59.00 NZ$ 5.60
CASSETTE SUBSCRIPTION NZ$130.00 NZ$ 7.50
DISK SUBSCRIPTION NZ$175.00 NZ$15.00
MICRO-80 is despatched from Australia by airmail to other countries at the following rates:

(12 MONTH SUB) Magazine Cass Sub Disk Sub
PAPUA NEW GUINEA Aus$53.50 Aus$115.50 Aus$148.50
HONG KONG/SINGAPORE Aus$58.00 Aus$122.00 Aus$157.50
INDIA/JAPAN Aus$64.00 Aus$129.00 Aus$165.00
USA/MIDDLE EAST/CANADA Aus$73.00 Aus$140.00 Aus$177.00

Special bulk purchase rates are also available to computer shops etc. Please use the form in this issue to order your copy or
subscription.

The purpose of MICRO-80 is to publish software and other information to help you get the most from your TRS-80, System
80/Video Genie or Peach and its peripherals. MICRO-80 is in no way connected with any of the Tandy, Dick Smith or Hitachi
organisations.

WE WILL PAY YOU TO PUBLISH YOUR PROGRAMS: Most of the information we publish is provided by our readers, to whom
we pay royalties. An application form containing full details of how you can use your microcomputer to earn some extra income
is included in every issue.

CONTENT: Each month we publish at least one applications program in BASIC for each of the microcomputers we support. We
also publish Utility programs in BASIC and Machine Language. We publish articles on hardware modifications, constructional ar-
ticles for useful peripherals, articles on programming techniques both in Assembly Language and BASIC, new product reviews
for both hardware and software and we printer letters to the Editor.

COPYRIGHT: All the material published in this magazine is under copyright. This means that you must not copy it, except for
your own use. This applies to photocopying the magazine itself or making copies of programs on tape or disk.

LIABILITY: The programs and other articles in MICRO-80 are published in good faith and we do our utmost to ensure that they
function as described. However, no liability can be accepted for the failure of any program or other article to function satisfactorily
or for any consequential damages arising from their use for any purpose whatsoever.

MICRO-80 is Registered by Australia Post — Publication No. SBQ2207

AUSTRALIAN OFFICE AND EDITOR: MICRO-80, PO. Box 213, Goodwood, S.A. 5034. Tel. (08) 211 7244
U.K. SUBSCRIPTION DEPARTMENT: 24 Woodhill Park, Pembury, Turnbridge Wells, Kent TN2 4NW
TYPESETTING & MAKE-UP: Formgraphic, 117 Wright Street, Adelaide, S.A. 5000. Tel. (08) 211 7866
PRINTED BY: Shovel & Bull Printers, 379 South Road, Mile End, S.A. 5031

PUBLISHED IN AUSTRALIA BY: MICRO-80, 433 Morphett Street, Adelaide, S.A. 5000

PAGE 2

MICRO-80

VOLUME 4 No 4 (NOVEMBER/DECEMBER 1983)

EDITORIAL

Welcome to our new-look
MICRO-80 magazine. We hope you find
the new layout more readable than the
old. For those interested in the
mechanics of magazine production, our
type setting is now being done on a
Compugraphic 80 Electronic photo-
typesetting machine. This is effectively
a multi-user computer/word processor
which produces its output photo-
graphically. The equipment is pretty
much state-of-the-art and is another pro-
duct of the microprocessor revolution.
Just in case you think we must have won
the lottery, the type setting equipment
is not ours but is the property of
Formgraphic, a very progressive type
setting house located nearby.

Quite apart from making the
magazine easier to read, the new type
setting fits double the amount of informa-
tion on each page thus enabling us to
reduce the paper used by almost 25%
(the Listings still occupy the same space
as before). So when future issues look a
little slimmer, don't fret, you will still be
receiving the same amount of information.
The reduction in paper content is aimed
at reducing the magazine’'s production
costs. It is now 2 years since the price
of MICRO-80 was last set. In that time,
production costs have increased
dramatically. Even with the reduction in
material costs we have now effected, we
must reluctantly increase the selling price
of MICRO-80. The new rates which
become effective immediately, are publish-
ed on the index page. The price increase
is modest and will enable us to continue
to improve our magazine and adapt it to
meet the changing requirements of our
readers. Of course, you will not be re-
quired to pay the new rates until your
subscription comes up for renewal. In-
cidentally, we do send Reminder Notices
when your subscription nears its expiry
date.

There have been several changes
in key staff at MICRO-80. Ryzard
Wiwatowski, the Editor for the past 12
months has resigned as has Charlie
Bartlett, the Software Editor for the past
22 years. Charlie is moving to sunny
Queensland. | am sure we ail wish both
men well in their future careers. lan Vagg
has assumed the role of Editor once more
whilst Ed Grigonis who operates a Model
1 system with disk drives and is an active
member of the Adelaide Micro Users
Group, has become Software Editor. The
departure of Ryzard and Charlie caused
no smail disruption in our production
schedule. The result is the issue you are
reading now. It is a double-sized issue
(after allowing for type setting) and en-
compasses both November and
December 1983 editions. It is also rather
late. The delayed production ran us slap-
bang into the Christmas season and the
subsequent annual close down of cur
printers. It will take a month or two until
we are once more back on schedule so
please accept our apologies for any in-
convenience caused.

Much has been happening of late
in the '80 field. Tandy has announced
several new products including a portable
Model 4 known as a Model 4P. This is
essentially a Model 4 in a more compact
package with 9” monitor, half-height disk
drives and separate keyboard which all
packs away into a large carrying case. The
complete unit weighs in at about 12kg and

with 2 disk drives and 64K of RAM sells
in the U.S.A. for $US1,799.00. Since the
4P has not yet been announced in
Australia its price here is unknown but will
probably be $2,600-$2,700, now that the
Model 4 itself has been reduced to
$3,000. There seems little doubt that like
radios and calculators before them, com-
puters are going to become portable. The
main impediment to this process is the
bulk and weight of a readable sized
display. Once flat screen or large liquid
crystal displays become available at a
suitable price the desk-top microcomputer
as we know it today is certain to become
a quaint relic of the past. The only ques-
tion now seems to be, how quickly will it
all happen?

On a less buoyant note, we have
heard form a usually reliable source that
EACA, the Hong Kong firm that manufac-
tured System 80/Video Genie, has ceas-
ed trading altogether. This will mainly af-
fect those System 80/Video Genie owners
who are planning to upgrade their systems
to include disk drives or a printer, since
printer interfaces and expansion interfaces
are no longer available. Fortunately, here
at MICRO-80 we had already commenc-
ed design work on a new expansion in-
terface and also a printer interface, when
the news broke. The interfaces will be
available for sale towards the end of
February 1984. The expansion interface
(there is also a TRS-80 version) includes
a printer port, RS232 port, floppy disk
controller and up to 32K of static RAM.
The use of static RAM gives high noise
immunity and removes many sensitive tim-
ing problems associated with the dynamic
RAM used in the early designs. The
printer interfact is decoded to both port
FD (standard System 80/Video Genie
printer port) and also to memory address
37EB8H, the address used in the TRS-80
Model 1. In this way Tandy software which
drives the printer port directly will operate
satisfactorily on the System 80. The ex-
pansion interface has the same ar-
rangements for its printer port, too.

The demise of EACA is somewhat
symptomatic of the changes taking place
in the '80 world. The proliferation of dif-
ferent brands of microcomputer, each
more dazzling and spectacular than the
last, has reduced the total amount of sup-
port available for any one brand. In par-
ticular, older machines such as the
TRS-80/System 80 are suffering badly.
There are many fewer organisation cater-
ing for these machines and even their
original distributors Tanady and Dick Smith
have markedly reduced their levels of sup-
port in favour of later models or different
machines altogether. At the same time,
these computers still have a good deal of
useful life left in them and there are literally
tens of thousands of owners who have a
large personal investment in them through
acquired knowlede and programs, both
written and purchased. We believe that
the TRS-80/System 80 computers are far
from finished and it is time that owners
drew together to assist each other even
more as commercial support wanes.
MICRO-80 interids to become an even
more important focal point for this support.
The development of new expansion inter-
faces for the TRS-80 and the System 80
and the distribution of Molymerx software
in Australia are just two of the ways in
which we have increased our support for
the owners of '80 computers. MICRO-80
itself will also change to better reflect the
interests of its readers. We will for the first
time encourage the placement of
advertisements for relevant products in
our magazine. Rates will be much lower
than in the general computing magazines

so that small, specialist suppliers will be
able to afford to advertise. We will shortly
launch a New Products column contain-
ing information about relevant new pro-
ducts for ‘80 computers. In these ways,
MICRO-80 will become a more complete
reference to all things ‘80 and help max-
imise the diminishing support. While some
of this may not be of great relevance to
overseas readers we are sure that the
changes in content which are planned will
be very appealing.

Over the years we have received
many comments from readers, both
positive and negative. Analysis of these
comments indicates that whilst the newer
computer owners find the material in
MICRO-80 to be pretty much what they
want, the more experienced owners find
fewer articles and programs to suit their
tastes. One of the most consistent com-
plaints is that we publish too many games
(usually expressed by the disgruntled as,
“All you publish is games’’). There are two
interesting observations to be made here.
Firstly, we do publish many other types of
programs besides games. Secondly, the
programs we publish represent a fair
cross-section of those being written (and
presumably used) by Readers so we are
probably catering to the ‘‘average’ taste.
That said, we accept that we do not
publish many ‘‘Serious’’ programs in terms
of relatively complex applications such as
Accounting Systems, Data Management
etc. Certainly, those of our critics who
suggest we should publish full-featured
working accounting systems for example,
are being somewhat unreasonable. Such
software sells for $2,000 or more. It
seems a little much to expect to be given
it for the price of a magazine subscription.
The reason these programs cost so much
is the very considerable amount of work,
often amounting to man-years, required to
write, test, debug and maintain them.
Speaking personally, if it were my
business at stake, | would make sure that
| paid the full rate for a properly supported
program because, when things go wrong
| want them fixed quickly. Nevertheless,
there is considerable scope to increase
our coverage in the serious applications
area. We will therefore, introduce a
number of changes over the next few
issues. Firstly, we will support two data
base programs, the Tandy Profile series
and ENbase from Southern Software. The
first because they are useful programs
that are very widely used, the second
because we believe ENbase to be the
most powerful data base available for the
'80 computers. Our support will take the
form of articles to assist you to unders-
tand the concepts behind the programs
and how to get the best form them and
also ‘‘Listings” of specific applications
which you can use just as you would a
BASIC program. We would welcome (and
pay for!) submissions by our readers.

In a similar vein, we will support
VISICALC and SUPER VISICALC with
articles, templates etc.

We will publish more in-depth
reviews of serious applications software
such as word processors, graph
generators, data bases etc. Games play-
ing can also be a serious business for the
real enthusiast so Ed Grigonis has under-
taken to write a series of detailed reviews
on many of the better quality games. Ed’s
first contribution on the Adventure System
is in this issue from which you will see that
he writes very high standard reviews
indeed.

One of the more neglected fields
in computer magazines of all kinds, is that
of utilising the graphics capababilities of
dot-matrix printers. The ubiquitious Epson

VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983)

MICRO-80

PAGE 3

MX-80 has spawned a host of cheap com-
patibles in its wake. There seems to have
been few articles published anywhere to
assist the owner unravel the Jinglish in the
instruction manuals, let alone make use of
the extremely versatile bit-graphics
capabilities of these printers. MICRO-80
will attempt to rectify these omissions by
publishing articles, programs etc which will

KALEIDOSCOPE

A major drawback in using the high
resolution screen on the Colour Computer
is the difficulty encountered when you try
to mix the text with the graphics. One way
of solving this problem was presented in
last month’s issue, but the WRITER pro-
gram in this issue by Geoffrey Williamson
demonstrates a much more flexible and
useful solution to the problem. Those of
you with Tandy’'s Editor/Assembler Plus
who wish to type in the source code from
the magazine will notice that a ‘few lines’
have been left out between lines 1500
and 12,040. This omission is quite
deliberate and in the interest of saving
space — the source lines omitted are
simply the multitude of FCB'’s that define
the bytes of the character table and these
can be just as easily read from the Hex
Dump. For reference, source line 1410
corresponds to the Hex Dump at $30CO.
For those of you entering the Hex Dump,
the memory addresses commencing at
$3000 are only a suggestion since you
cannot place the code starting at zero in
reserved RAM. However, the program is
written in position independent code and
you can locate the program anywhere you
find it convenient.

WATCH BASIC AT WORK

Normally, the text video display
memory on the Colour Computer is
located at $400-$5FF. The actual values
stored here determine which characters
are displayed on the screen of your TV.
set. However, the combination of SAM and
VDG potentially allow you to set the loca-
tion of display memory to anywhere in
memory aligned on a 5§12 byte boundary.
For those of you who are interested in how
a BASIC program or the interpreter itself
works, this capacity provides a rather uni-
que opportunity for a visual
demonstration.

In the September '83 issue, the
piece on conserving memory mentioned
the frivolous and extravagant use of the
CLEARed string space by the BASIC in-
terpreter. The following program provides
a graphic illustraiton of how the string

10 CLEAR 200, &H3IF00

15 DIM B$(26)

20 A=%H3FOO® : DEFUSRO = A
30 FOR I=0 TO 26 : READ A :
40 A=USRO (¥XH3IEOO) : A$=""
50 FOR I=0 TO 26

60 A$=A%$+CHR$ (1+63) =
70 NEXT 1

80 A=USRO (&H400) :
7?0 FOR J=0 TO 750 :
100 DATA
110 DATA
120 DATA
130 DATA

END
NEXT J :

38,242,57

POKE A+I,D :

B$ (I)=CHR%$ (32) :

assist the very many owners of such
printers to improve their usefulness.

Even with the increased emphasis
on ‘‘Serious’’ computing planned, we will
not neglect our less experienced readers
and will continue to provide articles and
programs to suit the new and intermediate
owner.

space
interpreter.

The program, first of all, reserves
some high memory for a machine
language subroutine and POKEs it into
memory. The subroutine modifies the
display offset register in the SAM chip and
allow you to display any portion of the 16K
RAM. The routine is called in line 40 and
sets the display memory to addresses
$300 — $3FF (in fact, any parameter in
this range would set the display to this
page of memory). Lines 50 to 70 do some
string manipulation which you can watch
on your screen (the subroutine at line 90
is used to slow the process down to a
pace with which the eye and brain can
cope).

You should see that the interpreter
uses up free string space at a rather rapid
rate until it runs out of space. When this
happens a garbage collection routine
compacts all the currently active strings
at the top of string space and then
releases the remainder and returns to run-
ning the program. With a very large
amount of string space, this garbage col-
lection routine can sometimes take several
minutes to executive and if the actual
amount of free string space is small, then
it will take place frequently, slowing down
the speed at which the BASIC program
is running.

The machine language subroutine
is completely relocatable but does use
one ROM call to retrieve the parameter
passed by the USR function. This address
($B3ED) may need to be changed in
future revisions of the Colour BASIC
ROMs. You can use this technique to look
at the operation of other BASIC
statements by changing the program lines
40-80 and you will probably need to look
at different areas of memory to see where
the action is taking place. The only limita-
tion so far seems to be that when the in-
terpreter uses the normal text page, it sets
the display offset register in the SAM to
show the normal text page. However, with
a little trial and error, you can use this
method to explore the workings of your
Colour Computer and its BASIC
interpreter.

is managed by the BASIC

NEXT I

GOSUB <90

RETURN
77,38,23,189,179,237,70, 198
7,142,255, 198,70,36,6,48
1,167,128,32,2,167,129,90

- PEACH

We hope you will find reading our
“New-Look’ MICRO-80 as exciting and
interesting as we find the prospect of pro-
ducing it. We believe that, whatever your
background and experience, each issue
will contain something to interest and
challenge you.

If you own a Peach and are a new
subscriber or have renewed your
subscription with or subsequent to the
first issue of Volume 4, then you are en-
titted to the new free software offer.
However, the SOFTPAK program library is
not suitable for the Hitachi Peach — in-
stead, we offer our Peach readers the
choice of one of three commercial games,
viz. Peach Invaders, Ghost Gobbler or
Scrambler. We are now at the stage where
we wish to prepare and distribute this soft-
ware gift but have encountered two
difficulties:

1. Our mailing list does not ictentify all of
our Peach subscribers.

2. We have no record of which particular
game you wish to receive.

If you are a Peach owner already
entitled to receive the new free software
or who will become eligible by renewing
your subscription at some stage during
Volume 4, then please drop us a line as
soon as possible with the following
information:

(i) Your name and address

(i) Your subscription expiry issue

(iii) Your selection of one of the following:
A—Peach InvadersB—Ghost Gobbler
C—Scrambler

Please direct this information to:

PEACH FREE SOFTWARE,
MICRO-80,
PO. BOX 213,
GOODWOOD, S.A. 5034

I _ 1

Many of our readers with disk
systems will appreciate the GRAFX utility
in this month’s issue. A number of people
have recently pointed out that many Level
2 BASIC programs utilizing machine
language subroutines more often than not
do not work with Disk BASIC (see In-
put/Output and below). The reasons for
this are fairly obvious. Most Z80 machine
code contains local absolute address
references and cannot be easily relocated.
Secondly, on 16K Level 2 machines, these
subroutines are usually placed at the top
of memory (i.e. below address 8000 Hex)
which usually conflicts with the program
storage area in Disk BASIC in the case of
all but the smallest of BASIC programs.
The program RECALL on the SOFTPAK
disk offers one type of solution to this pro-
blem. Another approach is the following
from one of our readers, Mr. Wilson of
Toronto:

MODIFICATION OF ‘GOLF’ FOR DISK
USAGE

I recently added a disk drive to my
System 80 and then, of course, set about
transferring all my tape based programs
to disk. With most BASIC programs this

PAGE 4

MICRO-80

VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983)

presents no problem at all. However, any
such program which contains a machine
language subroutine will require some
modifications. One program of this type
which | have converted is GOLF which
was published in the July 1983 issue of
MICRO-80. The changes | made may be
of interest to some other readers. This is
particularly true because, although articles
are often published which point out that
changes are needed and some describe
the disk instruction DEFUSR, | have not
seen any which explain in any detail all the
changes needed to convert a given
program.

The DEFUSR function was
described in the August 1983 issue of
MICRO-80. However, a brief recap of its
use is given here again for completeness.

In tape-based Level 2 BASIC the
entry address of a machine language sub-
routine is divided into its least and most
significant bytes which are POKEd into
locations 16426 and 16527 before the
routine is called using the A =USR(O) call.

In disk BASIC the entry address is
defined by DEFUSRn = address where
address is decimal or hexadecimal. The
number n in the DEFUSRN statement can
be 0O to 9 thus allowing up to 10 machine
language subroutines to be defined. The
calls to the subroutines are made by
A=USRn(x). More details on DEFUSR
and USR will be found in your DOS
manual.

In the GOLF program there is a
short machine language subroutine defin-
ed in statements 10 to 60. This routine
actually stores the screen image of the
GOLF hole so that it can be restored to
the screen later in the program. The
machine language statements are stored
in the dummy string LL$. The address of
LL$ is then POKEd in line 60.

The machine language routine
works by storing the 1024 screen data
values from addresses 15360 to 16383
into memory locations 30720 onwards. In
a 16K machine the locations are above the
addresses needed for the BASIC program
so they are in a safe location. However,
when disk BASIC such as DOSPLUS 3.4
is used, space up to about 21K is used
by disk BASIC and GOLF then stores up
to about 35K. Thus the machine language
routine uses locations in which BASIC pro-
gram statements are stored. This will
cause chaos to say the least! The solu-
tion is to change the routine so that it
uses much higher locations in memory.

The address which must be
changed in the machine language routine
is given by the sequence 0.120 which ap-
pears in line 10 and line 20 DATA
statements. In line 10 it is items 14 and
15 andinline 20 it is items 7 and 8. 0,120
defines a hex location 7800 (or decimal
30720). My machine has 48K RAM and
thus addresses up to 65535. | therefore
decided to place both the machine
language routine itself and the storage
locations used by the routine above
63000. | used location FAOO (or decimal
64000) in the routine as a storage loca-
tion. The value FAOO translates into data
values 0,250. Thus, to effect the change,
alter the value 120 in item 15 of line 10
and item 8 of line 20 to 250.

The routine itself | decided to
locate at 63500 (F80C in hex). This is
achieved by replacing lines 30 to 60 of
the original program by:

30 FOR 1=63500 TO 63529
35 READ LO

40 POKE 1-65536,LO

45 NEXT |

50 DEFUSR = 63500

The final point to note is the POKE
address in line 40. Because the System

80 can only handle integers up to 32767
it is necessary to use negative integers
for the addresses above this value in
POKE and PEEK statements.

With these two changes GOLF
Now runs as it used to on tape.

WHAT Y00
HAVE MISSED

Set out below is a list of some of
the programs published in early issues of
MICRO-80 magazine. Back issues are
available for $2.50 each or at the annual
subscription rate for 12 or more copies.
Cassette editions are available for all
issues for $4.00 each whilst DISKS are
available for all issues FROM
SEPTEMBER 1981 onwards. For 12 or
more magazines with cassette/disks
ordered at the same time, the relevant an-
nual subscription rate applies. Programs
for the Hitachi Peak/TRS-80 Colour Com-
puter were first published in the April 1982
issue. Complete indices to the first three
volumes of MICRO-80 magazine are in-
cluded in the December 1980, December
1981 and the August 1983 edition.

ISSUE 10—SEPTEMBER 1980*

ESCAPEE (L)
THE WORLD (L1)
CUP 80 (L1)
CUP ’80 (L2)
TRIANGLE (L2)
THE WORLD (L2)
SOLVER (L2)
LOTTO PREDICTOR (DB)
ISSUE 20—JULY 1982

SHARE GRAPH (L1)
CHEQUE BOOK DATA FILE (L)
BLOWFLY (L2)
MILEAGE CALCULATOR (L2)
CONVERSIONS (L2)
STAR SHOOT (L2)
BINGO (L2)
GENIUS (L2)
DISK INDEX (DISK)
VOLUME 3 NO. 7—JUNE 1982

UNIT CONVERSIONS (CC/PEACH)

NORMAL DISTRIBUTION (CC/PEACH)

MICRO GRAND PRIX (L2)
PASSWORD (L2)
PASSWORD CHANGE PROGRAM (L2)
OTHELLO (L2)
LOAN CALCULATION PACKAGE (L2)
L1—Level 1

L2—Level 2

CC—Colour Computer

HP—Hitachi Peach

*Issue incorrectly labelled August.

The following back issues of

MICRO-80 magazine are still available:
79 81

80 ‘82 '83
Jan — P - - _
Feb — P X - _
Mar —_ P P P
Apr _ X P P —
May — e e —
Jun —_ X P e J—
Jul — P P P v
Aug — X P P P
Sep — e e
Oct — X v~ X v~
Nov — X L _
Dec v W - —

— means never published
»~ means issue available
X means issue out of print

FORM
THREE

NEWDOS 80 provides a copy of
the original Radio Shack Editor/Assembler
modified so that source files can be sav-
ed to or loaded from disk. However, on the
Model 3, Apparat chose to drop support
for cassette tape so that you cannot load
source files from cassette at all. This can
be quite frustrating if you wish to modify
a source file you may only have on tape.
The Source utility in this month’s issue will
overcome this problem and save you hav-
ing to tape the source code in a second
time.

BMON ON THE MODEL 3

A number of readers have en-
quired about using BMON on the Model
3, without much success. Interestingly,
the Adelaide Micro User Group publish-
ed in their October newsletter some pat-
ches developed by one Tony Domigan to
make BMON work on the Model 3. His
item is reproduced here with permission
for the benefit of our readers.

Eddy Paay’s BMON will not work
on the Model 3 because it uses the Model
1's keyboard caller address (O3E3H), and
jumps to BASIC via 06CCH. Rather than
just patch the old caller with 3024H | have
reworked some of Eddy’s code to patch
the current keyboard caller thus allowing
BMON to work in Newdos, Ldos and
TRSdos Disk BASICs as well as Model 3
BASIC. Furthermore, all cassette routines
will prompt you for the baud rate to use
and the ASCIl character will now be
displayed alongside the hex character in
the edit mode.

Edit characters (below) enclosed
in brackets, e.g. (FX) are for the 48K ver-
sion only. If you are using a 32K BMON
then substitute ‘BX’ and for the 16K ver-
sion use ‘7X.

1. (a) Reserve Memory
(b) Load BMON thru SYSTEM
BMON
(c) In place of answering /ENTER’
substitute . .. /64464 (48K), /48090
(82K), /31696 (16K)

2. Edit address FB99/BB99/7B99 and
enter . .. CD, CS, 01, 21, 25, (FB), CD,
1B, 02, 2A, 16, 40, 22, C7, (FB), 21,
C6, (FB), 22, 16, 40, 01, 18, 1A, C3,
AE, 19, CD, C9, 01, CD, 42, 30, C9,
CD, 33, 00, E5, 7E, 2A, 20, 40, C3,
OC, FC, CD, 24, 30, B7, C8, FE, 02

3. Edit FB4E/BB4E/7B4E and enter 43,
54, 52, 4C, 3E, 20, 20, 42

4. Edit FB60/BB60/7B60 and enter 29,
oD

5.Edit address FBFB/BBFB/7BFB and

enter . ..
21, E8, (FB), CD, 1B, 02, 21, 00, 50,
CD, 60, 00, CD, 42, 30, 18, OC, 77,
23, 3E, 20, 77, 23, 22, 30, 40, E1, C9,
00

6. Edit address FD6E/BD6E/7D6E and
enter CD, A8, (FB)

7.Edit address F9C1/B9C1/79C1 and
enter CD, B4, (FB)

8. Select (B)asic and execute the BASIC
line applicable to your BMON version.
10 POKE - 2558, 187: POKE - 2557,
251" (48K)
10 POKE - 18942, 187: POKE
- 18941, 187’ (32K)

10 POKE 30209, 187: POKE 30210,
123 (16K)

VOLUME 4 No 4 (NOVEMBER/DECEMBER 1983)

MICRO-80

PAGE 5

9. Cassette

users enter CTRL-B
(shift/down arrow/B) to enter BMON and
create a system tape of the modified
BMON.

BMONStart End Entry
Addresses
16K 7210 7EFE 7B99
32K B210 BEFE BB99
48K F210 FEFE FB99

Disk users should re-boot DOS
and transfer the program using the
‘DUMP’ command.

—Adelaide Micro User News,

October, 1983.
DEFUSR PROBLEM

Some programs intended for
Level 2 systems will cause problems
when you try to run them on the Model
3. For example, Andre Marino reports
the following difficulty:

“l am writing about a program
you have already published two months
ago (August, 1983). The program is
DEFUSR. | am having problems in get-
ting the program to load. The program
loads for a brief second and then the
screen scrolls up with a continuous flow
of question marks. | have a TRS-80

Model 3 48K cassette based computer.
My belief, through some experimenta-
tion, is that the program is in a bad area
of memory, but have found no way to
make the program work. | would ap-
preciate it if you could help me out with
this problem.”

The memory from 4040H to
404FH is not a good place to put
machine language programs on the
Model 3. Although the Level 2 scratch
pad areas used by the Model 1 and
Model 3 are the same, most of the
reserved RAM area used by the Disk
Operating System is quite different.
Parts of the Model 1 DOS reserved
RAM is used to implement other
features in the basic Level 2 mode of
the Model 3 and more low memory is
reserved for use by the DOS. This
means that those machine language
programs residing in Model 1 DOS
reserved RAM locations will probably
not work on a Level 2 Model 3. There
are two solutions to this problem. The
first involves protecting some high
memory and moving the program to
high memory (suggested in the Form

00100 : DEFUSR for the Model 3
4F 99 00110 ORG 4FO0H H
4F 09 2AA440 90120 START LD HL, (40A4H) H
4F93 225C41 00130 LD (415CH) , HL H
4F06 11194F 00140 LD DE, DEFPRC H
4F09 1A 00150 LOOP LD A, (DE) H
4FoeA 77 00160 LD (HL) ,A H
4FOB 13 00170 INC DE H
4FeC 23 00180 INC HL
4FeD B7 00190 OR A
4FQE 20F9 00200 JR NZ,LO0P H
4F10 22A440 00210 LD (40A4H) ,HL H
4F13 CD4D1B 00220 CALL 1B4DH ; Do a

00230 i
4F16 C3191A 00240 JP 1A19H H
4F19 CF 00250 DEFPRC RST 8 H
4F1A C1 00260 DEFB OC1H
4F1B CF 00270 RST 8
4F1C DS 00280 DEFB ODSH
4F1D CD3I723 00290 CALL 2337H
4F20 ES 00300 PUSH HL
4F21 CD7F0A 00310 CALL OA7FH
4F24 228E40 0032 LD (408EH) , HL
4F27 E1 0033 POP HL
4F28 C9 00340 RET
4F29 00 00350 NOP H
4F 90 0036¢ END START

This program will tuck DEFUSR
between reserved RAM and the BASIC
program storage area. This technique
could also be used to place other pro-
grams here with some precautions. The
program should be relocatable and must
not contain a zero within its code (since
the particular loop that moves the pro-
gram code terminates when a zero is
encountered — a different loop struc-
ture could be used). If you don’t have
an assembler then the following BASIC
program will load the program into
memory and run it:

AN EXPLANATION OF HOW TO
MAKE FULL USE OF THE PEEK,

POKE AND USR STATEMENTS

by Gordon S. Thomas

*DEFUSR for the Model 3
POKE 16526,0 :
A=20224 ’*Start Address
FOR I= O TO 41 :
X=USR (0)

DATA 42,164,64,34,92,65,17,25,79,26,119,19,35, 183,32,249
DATA 34,164,64,205,77,27,195,25, 26,207, 193,207,213, 205,55, 35
DATA 229,20S,127,10,34, 142,64, 225,201,0

The object of this article is to ex-
plain the use of the PEEK, POKE and
USR statements and functions in Level
2/Model 3 BASIC following a request in
the ‘‘Readers’ Requests’’ section in
Micro-80 Vol. 3 No. 10 (September 1982).
The article assumes no previous
knowledge of the uses of these
statements.

Unless otherwise stated, all infor-
mation contained herewith is equally ap-
plicable to TRS-80 Models 1 and 3

Entry /20224
Start of BASIC pointer
Disk BASIC exit for DEFUSR
The DEFUSR code address
Move the code to where
BASIC programs normally
start

Loop until finished
Set new Start of BASIC
*NEW?
remaining BASIC pointers
Return to BASIC

DEFUSR code

Mandatory terminator

POKE 16527,7%9 °

READ D :POKE A+I,D :

Three column of the same issue). The
second is to ‘hide’ the program bet-
ween the reserved RAM and the start
of the BASIC program storage area by
moving the latter to a higher memory
location.

If the particular machine
language program is not relocatable and
contains local absolute address
references, then these must all be
changed to reflect the program’s new
location in memory. If the source code
is available then this is best done by
reassembling the program at the new
memory location by changing the ORG
statement. If only the object machine
codeis available, then this can be a long
and complex task which must be done
by hand. Fortunately, the DEFUSR pro-
gram does not require any such
changes as it is relocatable. The first
method has the additional disadvantage
that you must protect high memory
each time before using the program.

The second method is more
elegant in the case of relocatable
machine language programs and can be
achieved by the following code:

to setup the

Be warned, this will destroy any
resident BASIC Program so CSAVE the
program before you RUN it.

Set USR entry point

NEXT I

cassette and disk systems (and all other
software compatible computers) with any
memory size. It is not applicable to Level
1 BASIC computers since they do not
have these statements.

The computer's memory is made
up of two main types of memory, which
are Read Only Memory (ROM) and Ran-
dom Access Memory (RAM). ROM is
where the Level 2/Model 3 BASIC inter-
preter is stored. ROM cannot be chang-
ed by any software (i.e. written to).

PAGE 6

MICRO-80

VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983)

RAM, on the other hand, can be
changed and it is here that all user pro-
grams and data are stored (until the power
is disconnected). Therefore, to modify the
computer’s operation in any manner by
software requires that the contents of
RAM be changed.

The Z80 microprocessor contain-
ed in the computer is capable of inter-
acting with 65536 memory locations.
Depending on the computer, anywhere
between 12K and 14K of these memory
locations are used by the ROM with the
rest being used by the RAM. Each one
of these memory locations is assigned a
number, called an ‘‘address’’. It is these
addresses which the PEEK function and
the POKE statement require in their
respective syntax.

There are various, different ways
of referring to these addresses. They can
be numbered using the decimal system
(which is just our normal everyday coun-
ting system) or they can be numbered us-
ing the hexadecimal system, which is what
the computer uses. (This is not strictly
correct but is adequate for the purposes
of this article).

The hexadecimal system uses the
digits 0-9 and the letters A-F to designate
the decimal numbers 0-15 respectively. In-
stead of each place in a number being a
power of 10 (as it is in the decimal system)
the hexadecimal system has every place
representing a quantity of a power of 16.
e.g. 38 (decimal) = (3x 10') + (8x 10°)

30 (hex) = (3x 167) + (8x 169)
= 56 (dec)
38 (dec) = (2x 167) + (6x 169)
= 26 (hex)

PEEK: If we want to know what value is
stored in a particular address all we have
to do is type: PRINT PEEK (address)
eg. to find out what is stored in the top
left hand corner of the screen (address
156360) we wouid type

PRINT PEEK (15360)

This will return a decimal number
which represents what is contained in ad-
dress 15360. Therefore if the top left
hand corner of the screen contains the
letter ‘B’ then the decimal value 66,
which is the ASCII code for the letter ‘B’
will be returned.

Any ~ddress in the computer’s
memory can be PEEKed (i.e. from O to top
of RAM). The top of RAM addresses for
the various memory sizes are as follows:

Mem Size Hex Dec
16K 7FFF 32767
32K BFFF 49151
48K FFFF 65535

In order to PEEK any address
above 32767 it is necessary to subtract
65536 from the address in question.
e.g. to display the contents of 40000, type
FRINT PEEK (—25536)

since 40000 - 65536 = —25536. The
hexadecimal equivalent of 40000 is
9C40H since 9C40H = (9x16°) +
(12x162) + (4x167) + (0x16°) =

40C00 where H indicates that it is hexa-
decimal quantity.
However, if you type (for Disk
BASIC only)
PRINT &H9C40 (syntax for 9C40 hex) the
computer will respond with — 255386, i.e.
the computer takes care of the conversion
process. This is why many programmers
prefer to use hexadecimal when referring
to memory addresses — it requires no ad-
ditional calculations to determine what
number to use to designate a particular
address. In general, to PEEK any address
in the computer’s memory, type
PRINT PEEK (X+ 65536 * (X>32767)
For X> 32767 the expression
(X>32767) will be TRUE, resulting in — 1.

This effectively subtracts 65536
from the address.

For X< =32767 the expression
(X> 32767) will be FALSE, resulting in O.

This will not affect the address in
any way.

The same rules apply for the ad-
dresses in the POKE statement.

POKE: If we want to change the contents
of a particular memory location we use the
POKE statement. Its syntax is

POKE address, value

eg. tostorea ‘1" in the top left hand cor-
ner of the screen we would type
POKE 15360, 49

(49 is the ASCII code for the number ‘1)

The POKE statemernt is useful for
loading small machine language routines
into memory to be accessed from BASIC.
It also has many other uses. Some of the
most common are:

1. setting memory size from BASIC
(addresses 16561 — 16562)
2.loading graphics character onto the
screen
(addresses 15360 — 16383)
3. disabling the (BREAK) key in Cassette
BASIC
(addresses 16396 — 16397)
4.pointing to a USR routine in Cassette
BASIC
(addresses 16526 — 16527)

In order to be able to fully utilize
the capabilities of the POKE statement it
is necessary to have a basic under-
standing of the terms ‘‘least significant
byte’” and ‘‘most significant byte’’. When
we see the number 327 in everyday life
we all know what it represents, since we
are used to dealing with decimal quan-
tities. The 3 can be thought of as the
most significant digit and the 7 can be
thought of as the least significant digit. In
hexadecimal we group two digits together
and call it a byte.

e.g. for 9C40H (40000 decimal)
the most significant byte is 9CH with the
least significant byte being 40H. The
decimal equivalents of 9CH and 40H are
156 and 64 respectively. There is an alter-
native way of determining these numbers.
Note that 156 is actually stating how many
whole lots of 256 (decimal) that there are
in 40000, and that 64 is stating how many
lots of 1 there are left over.

ie. 40000 = (156 x 256) -+ {64x1)

Therefore we can arrive at the
same numbers using the following
procedure:

MSB = INT (40000/256) = 156
LSB = 40000 - (256 xMSB) = 64

Either of these methods may be
used to determine the LSB and MSB of
any address for which they are required.

Many settings require this exact
format to be used in order to change
them. For example, the memory size is
stored in addresses 16561 — 16562 in
the format LSB,MSB.

i.e. 16561 contains the LSB, and
16562 contains the MSB.

This is true in general for all two
byte quantity storers. The first address
contains the LSB and the second address
contains the MSB. Therefore to set a
memory size of 40000 we would have to
type
POKE 16561,64
POKE 16562,156
CLEAR xxxx
where xxxx is the string space reaquired.

The CLEAR forces BASIC to
recognize the new top of memory. This
technique for setting the memory size can
be used on both cassette and disk
systems and saves the operator from hav-
ing to enter the memory size at power-up
in response to the ‘“‘Memory Size?"’ ques-
tion. The program included with this arti-

cle provides an example of the use of this
facility.

POKE is also used on the model
3 to set values for a whole range of dif-
ferent features, e.g. to prevent the top two
lines of the screen from scrolling, type
POKE 16916,2
or, to set the special characters mode,

type

POKE 16420,1

(This saves using PRINT CHR$(22) which
can be a nuisance since it is effectively
only a toggle switch and the programmer
can never be certain which mode is set).

For other useful addresses on the
Model 3, refer to the Model 3 BASIC
Reference Manual, pp. 83-84.

USR: The USR function is used to
provide an interface between a BASIC pro-
gram and a machine language subroutine
to be called from the BASIC program.
Once a machine language subroutine has
been poked into memory (see later) BASIC
needs a way to call it. The USR function
caters for this requirement.

Before BASIC can call a machine
language subroutine, it needs to know
where the entry point is located in
memory, i.e. where to start executing from.
In Cassette BASIC this is achieved by
POKEing the address in LSB, MSB for-
mat into memory locations 16526-16527.
For Disk BASIC it is achieved by typing
DEFUSRx = address
where x is a number from O to 9 indicating
which USR routine is being used (since
Disk BASIC provides the choice of 10
possible USR routines).

e.g. If the entry point is 40000,
For Cassette BASIC, type
POKE 16526,64 (LSB)
POKE 16527,156 (MSB)
For Disk BASIC, type

DEFUSRO = 40000
or DEFUSRO = &H9C40 to use USR
routine O

The machine language subroutine

can then be accessed by typing

X = USR (arg) for Cassette BASIC
and X = USRO (arg) for Disk BASIC
(Note: The Disk BASIC call will function
correctly without the O but it is always
safest to include it so you don't forget
which routine you’re accessing).

The number enclosed by the
parentheses, (arg), is an integer argument
which can be sent to the machine
language routine. For example, if we had
aroutine to scroll a certain number of lines
up the screen, the argument would be the
number of lines that we wanted to scroll.
The argument sent to the routine may be
any integer in the range -32768 to
+ 32767 inclusive. If the programmer
does not wish to send an argument then
the number enclosed by the parentheses
is considered to be a dummy argument
and is only there to satisfy the syntax re-
quirements of the USR function.

The variable assigned to the USR
routine (in this case X) will contain the
argument sent from the machine language
routine, if any.

LOADING MACHINE LANGUAGE
SUBROUTINES INTO MEMORY: There
are several ways of loading machine
language subroutines into memory. The
easiest and the most obvious way is to
load it via the SYSTEM mode in a cassette
system or via the DOS command LOAD
In a disk system. However, these two
methods are only any good if you have an
assembled version of the subroutine
stored on disk or tape, whatever the case

may be.
For other methods of loacing
machine language subroutines into

memory, | thoroughly recommend a copy
of Lewis Rosenfelder's book ‘‘BASIC

VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983)

MICRO-80

PAGE 7

Faster and Better & Other Mysteries”,

which is available from MICRO-80 for

$39.95 and is also listed in Tandy’s RSC-9

Catalogue for $39.95.

The method that | will use is the
one which | consider to be the easiest to
understand and modify for the various
memory sizes. This method involves
POKEing the values into memory byte by
byte from DATA statements.

| have included two sample pro-
grams with this article. The first of these
programs provides a substitute for the
BASIC INPUT statement. It is superior to
the statement it replaces in the following
respects:

1. The BREAK, CLEAR and all arrow keys
except the back arrow are all locked
out.

2. The ENTER key will be ignored if the
current length of the input is zero.

3. It provides a flashing cursor (for both
Models 1 and 3).

4. The cursor may be changed to any
character available in the computer’s
character set with a simple POKE
statement.

5.1t will only accept a predetermined
length of input (specified by the pro-

grammer in the USR call) and then the
cursor is changed to a non-flashing
program-definable character indicating
that no more input will be accepted.

6.Because it is written in machine
language, it cannot be out-typed as can
so many of the equivalent BASIC
routines.

7.1t shows the operator how many
characters may be entered by display-
ing a number of characters on the
screen corresponding to the maximum
length of the input.

8. It will accept all delimiters (e.g. commas)
without ignoring the characters which
are entered after them.

In summary this routine effective-
ly gives BASIC a super-powered LINE-
INPUT function. It can be used on both
cassette and disk systems, as can the
BASIC program which enters the routine
and demonstrates how to use it in your
program.

Program Listing 1 is the
documented source code for the USR
routine to replace the INPUT statement.
This routine only makes use of four ROM
routines all of which are located in the
same place on Models 1 and 3. These are

the 49H ROM routine which waits for a
character to be entered from the
keyboard, and the 2BH ROM routine
which accepts a character from the
keyboard if a key has been pressed. Both
of these ROM routines are documented
in the technical information section of the
Model Il Reference Manual. | checked
with the Memory Map for Level Il in 80
Micro — a Wayne Green Publication (Dec.
82 pp. 298-311) and found these same
ROM routines for the Model I. The other
ROM routines referred to are the ones for
accepting and sending arguments from
and to BASIC. These routines (OA7FH and
0OA9AH) are documented under the USR
function in both the Level Il and Model 3
BASIC Reference Manuals. They are the
same for both computers. Therefore |
foresee no problems with getting this
routine to work on either computer.

The source listing as shown has
been assembled for a 48K computer with
an origin of FFOOH. However, this should
be changed to BFOOH for a 32K com-
puter and 7FOOH for a 16K computer.
The source code may then be entered in-
to a computer via an editor/assembler
such as EDTASM.

FIF1F § ¥HFHHHHHHH R T TN R HFe A X R0
99929 ;% *
29933 ;% PROGRAM LISTING 1 *
29949 ;% *
99959 ;% USR ROUTINE TO REPLACE THE ’INPUT® STATEMENT *
99969 ;¥ *
29979 ;% COPYRIGHT (C) 1983 BY G.S.THOMAS *
99989 ;% *
GOFPT § X AR IR H X HHEHOHHHERERHEE
291909 ;

FF99 99119 ORG 9FFEaH

4929 99129 CURPOS EGU 16416 5 CURSOR POSITION ADDRESS

BA7F 99139 BASARG ERBU GAZFH 5 ARGUMENT FROM BASIC

FA%A 29149 ALARG EQU PAPAH 3 ASSEMBLY LANGUAGE ARG

2949 99159 KBWAIT EQU 4%H 5%AIT FOR CHAR FROM KB

992B 99169 KBCHAR E&U 2BH $GET CHARACTER FROM KB

FF99 1841 99179 JR START 3 SKIP STORAGE AREA

9949 99189 INPUT DEFS 64 5RO0OM TO SAVE TEXT

9991 99199 CHAREN DEFS 1 5CONTAINS CHAR ENTERED

FF43 CD7F9A 99289 START CALL BASARG iGET ARG FROM BASIC

FF46 45 99219 BEGIN LD B,L 3B CONTAINS MAX LENGTH

FF47 9E99 99229 LD c,9 5C CONTAINS CURRENT LENGTH

FF4% CS 99239 PUSH BC 3 SAVE LENGTH INFORMATION

FF4A 2A2949 29249 LD HL, (CURPOS) s GET CURSOR POSITION

FF4D ES 99259 PUSH HL i SAVE IT

FF4E 3688 9269 PROMPT LD (HL) , 136 sPRINT CHR$(136) AT CURPOS

FFS9 23 99279 INC HL s NEXT SCREEN POSITION

FFS1 19FB 99289 DJINZ PROMPT SUNTIL MAX LENGTH

FFS3 3629 29299 LD (HL) ,32 i BLANK ONE CHAR AFTER

FFSS E1 29399 POP HL $sRETRIEVE OLD CURPOS

FFS6 D1 29319 POP DE sLENGTH INFO INTO DE
99329 ;

FFS7 Z7A 29338 READKB LD A,D 5GET MAXIMUM LENGTH

FFS8 BB 29349 CP E ; COMPARE CURRENT LENGTH

FF59 282C 99359 JR Z,MAXLEN GO IF MAX = CURRENT

FFSB 9E@2 99369 FLASH LD c,2 iNO. OF TIMES THROUGH LOOP

FFSD 965A 29379 LD B, %9 s DELAY TIME

FFSF 368F 29389 CURON LD (HL), 143 s GRAPHICS BLOCK

FF&61 DS FB3I°F PUSH DE i SAVE LENGTH INFORMATION

FF62 CD2B99 28499 CALL KBCHAR $GET CHAR IF AVAILABLE

FF6S D1 299419 POP DE sRETRIEVE LENGTH INFO

FF66 FEZ9 99429 CP 2 iKEY PRESSED ?

FF68 2924 99439 JR NZ,KEY s IF YES THEN GO

FF6A 16F3 99449 DJINZ CURON sELSE TRY AGAIN

FF6C 9D 29459 DEC c sONE LESS LOOP

FF6D B9 99469 CP (o s ANY LOOPS LEFT?

FF6E 29EF 99479 JR NZ, CURON 3 IF YES THE GO

FF79 9E92 99489 LD c,2

FF72 965A 29499 LD B, 99

FF74 3688 99569 CUROFF LD (HL) , 136 3 DOT PROMPT

FF76 DS 29519 PUSH DE

FF77 CD2B99 aaS29 CALL KBCHAR

FF7A D1 99538 POP DE

PAGE 8

MICRO-80

VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983)

FF7B FE99 29549
FF7D 288F 89559
FF7F 19F3 29569
FF81 @D 29579
FF82 B9 29589
FF83 29EF 99599
FF85 18D4 29699
FF87 363C 99619
FF89 DS 99629
FF8A CD4999 83639
FF8D D1 285649

99659
FFBE 3242FF 89669
FF?1 3EO9 29679
FF?3 BB 99689
FF94 3A42FF 29699
FF97 2811 99799
FF99 FEZD 29719
FF9B 2831 29729
FF?D FE@Z8 29739
FF9F 281F 99749
FFAl FE1l8 29759
FFA3 2995 29769
FFAS 6A 29779
FFA6 2699 29789
FFA8 189C 29799
FFAA 7A 99899
FFAB BB 29819
FFAC 28A% 99829
FFAE 3A42FF 99839
FFB1 FE29 29849
FFB3 FAS7FF 99859
FFB6 FE7B 29869
FFB8 F257FF 99879
FFBB 77 29889
FFBC 1C 208899
FFBD 23 29999
FFBE 1897 29919

29929
FFCO 7A 29939
FFC1 BB 29949
FFC2 2996 29959
FFCa4 3628 29966
FFCé6 1D 29979
FFC?7 2B 29989
FFC8 188D 29999
FFCA 3688 219909
FFCC 18F8 21919

21929
FFCE 7A 91939
FFCF 93 21949
FFDG 2994 21959
FFD2 3629 21669
FFD4 1896 21979
FFD6 47 21089
FFD7 3629 21999
FFD? 23 21199
FFDA 19FB 21119
FFDC 4B 21129
FFDD DS 21139
FFDE 2A2949 21149
FFE1l 1192FF 21159
FFE4 9699 91169
FFE6 EDBZ 91179
FFE8 D1 21189
FFE? 2699 21199
FFEB 6B 21209
FFEC C39A9A 91219
29999 91229

For those who do not have an
editor/assembler, Program Listing 2 is the
BASIC program which will enter the
routine into memory. This program will
work on either a disk system or a cassette
system with any memory size. The
numbers contained in the DATA
statements are the decimal equivalents of
the hexadecimal numbers in the second
column on the left of the source listing.

MAXLEN

KEY

LETTER

ERASE

PROCES

NOTMAX

ENTER

CLINE

BLANK

BASIC

CP
JR
DJINZ
DEC
CP
JR
JR
LD
PUSH
CALL
FOP

LD

CP
LD
JR
CP
JR
CP
JR
CP
JR
LD
LD
JR
LD
CP
JR
LD
CP
JP
CP
JP
LD
INC
INC
JR

LD
CP
JR
LD
DEC
DEC
JR
LD
JR

LD
SUB
JR
LD
JR
LD
LD
INC
DJINZ
LD
PUSH
LD
LD
LD
LDIR
POP
LD
LD
JP
END

>}
NZ,KEY ;ETC

CUROFF

c

c

NZ, CUROFF

FLASH ; KEEP FLASHING

(HL) , 60 ;PRINT *<*

DE ;SAVE LENGTH INFORMATION

KBWAIT ;WAIT FOR CHAR FROM KB

DE ;RETRIEVE LENGTH INFO

(CHAREN) , A ; SAVE THE CHAR ENTERED

A,g

E ; CURRENT LENGTH ZERO?

A, (CHAREN) ;RESTORE THE CHARACTER

Z,LETTER ;IF E=8 THEN GO

13 ; CENTER> ?

Z,ENTER 5IF YES THEN GO

8 ; CERASE> ?

Z,ERASE ;IF YES THEN GO

24 ; C<SHIFT-ERASE> ?

NZ,LETTER ;IF NOT THEN GO

L,D ;MAX LENGTH BACK INTO L

H,8 ;RESET H

BEGIN ;START INPUT AGAIN

A,D ;GET MAXIMUM LENGTH

E ; COMPARE CURRENT LENGTH

Z ,READKB ; IF MAX=CURRENT THEN GO

A, (CHAREN) ;RESTORE THE CHARACTER

32 ;LOWER ASCII LIMIT

M, READKB ; IGNORE CHAR IF LOWER

123 ;UPPER ASCII LIMIT

P,READKB ; IGNORE CHAR IF GREATER

(HL) ,A ;PRINT THE CHARACTER

E ; INCREMENT THE LENGTH

HL ;NEXT SCREEN POSITION

READKB ; GO BACK

A,D ;GET MAXIMUM LENGTH

E ; COMPARE CURRENT LENGTH

NZ, NOTMAX ;60 IF MAX <> CURRENT

(HL) , 32 ;PRINT A SPACE

E ; DECREMENT LENGTH

HL ; PREVIOUS SCREEN POSITION

READKB ;GO BACK

(HL), 136 ;PRINT DOT PROMPT

PROCES ; PROCESS THE SPECS

A,D ;GET MAXIMUM LENGTH

E ; SUBTRACT CURRENT LENGTH

NZ, CLINE ; IF DIFFERENCE<>9 THEN GO
(HL),32 ;PRINT A SPACE

BASIC ; BACK TO BASIC

B,A ; DIFFERENCE INTO B

(HL) ,32 ; BLANK OUT SCREEN POSITION

HL s NEXT SCREEN POSITION

BLANK ;UNTIL ALL DONE

C,E ; CURRENT LENGTH INTO C

DE ; SAVE LENGTH INFORMATION

HL, (CURPOS) ;GET ORIGINAL CURPOS

DE, INPUT ; DESTINATION

B,o ;RESET B

i SAVE THE TEXT

DE ;RETRIEVE LENGTH INFO

H,o ;RESET H

L,E ;FINAL LENGTH INTO L

ALARG ;PASS IT TO BASIC

19 7 3R IO R AR R0k
20 "% *
38 "% PROGRAM LISTING 2 *
ag "% *
59 '* BASIC PROGRAM TO POKE USR ROUTINE INTO #
69 '¥ MEMORY TO REPLACE THE INPUT STATEMENT *
79 % *
80 ¥ COPYRIGHT (C) 1983 BY G.S.THOMAS *
°g "% *
N R e 3 S TR RN TT TR T PP T TR TE LT L P LS TS

VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983)

MICRO-80

PAGE 9

119 ° The program operates in the
126 *NOTE: The routine will work as is without changing any following manner:
139 °* of the settings. The settings are there purely and It obtains the current tup of
149 * simply for the programmer’s convenience. memory from the addresses 16561-16562
156 * and allocates room for itself just below the
16 ' To save memory, all the REM statements can be removed tODOfmemonﬂThS'Sdone’n256byE
178 * and the smaller lines can be compounded together using mcrements so as to make relocating the

s - routine easy. Unfortunately, | could not
189 * the colon (":%). make the routine truly relocatable (I had
196 * For example, see line 369 to include two JP instructions which are
209 - not relocatable) and therefore | had to have
219 DATA24,65,295S the BASIC program which POKEd the
229 DATA127,10,69,14,8,197,42,32,64,229,54,136,35,16,251,54,32 routine into memory do the relocating for
238 DATA22S,29%,122,187,49,44,14,2,6,99,54,143,213,205,43,8,299 Me. It then resets the top of memory to
249 DATA254,08,32,36,16,243,13,185,32,239,14,2,6,90,54, 136,213 P’Ot%"tt‘tsﬁlf atﬂg pre"egt BAE’C f“\’/’" Sﬁgr'
258 DATA29S, 43,9, 299, 254,0,32,15,16,243,13, 185,32,239,24,212,54 'rg%ﬁn:a,’t tf?en pr’;)eceae?js t‘ng,:’On%Eothzdatg
268 DATA&9, 213, 295,73,9, 299,59, 66,255, 62,9, 187,58, 66,255, 49 into memory and once this has been com-
279 DATA17,254,13,49,49,254,8,49,31,254,24,32,5,186,38,9,24, 156 pleted, the routine is ready for use. The
289 DATA122,187,49, 169,58, 66,255, 254,32,259,87,255,254, 123,242 program then sets up the USR routine
299 DATA87,255,119,28,35,24,151,122,187,32,6,54,32,29,43,24 pointers using the addresses
399 DATA141,54,136,24,248,122,147,32,4,54,32,24,6,71,54,32,35 16526-16527 or the DEFUSR statement,
319 DATA16,251,75,213,42,32,64,17,2,255,6,8,237,176,2089,38 whichever is applicable.
320 DATAZ, 197,195,154, 19) To access the routine from BASIC,
338 TM=PEEK(16561) +PEEK(16562) %256 'Get Top of Memory ;;Sca(zrrta?n"‘ne of the following form in your
349 N2=INT (TM/256) 'Calculate Most Significant Byt? 1000‘5;,,” ‘Clear the variable to
359 IFTM-2S56%N2<172THENN2=N2-1 'Make room for routine contain the input
368 POKE16561,255:POKE16562,N2-1 *Set NEW Top of Memory :X = USR(L) ‘Make the call
379 CLEARSS "Make BASIC recognize new Top of Memory :POKE VARPTR(I$),X ‘Set the length
389 NT=PEEK(16562) +1 'MSB of Start of Routine of I$
398 SA=NT*256 'Starting Address for Routine :POKE VARPTR(I$) + 1,2'LSB of address
498 IFSA>32767THENSA=SA-65536 'Prevent OVERFLOW Error to I$
410 READA:POKESA,A:READA: POKESA+1,A 'POKE first two bytes :POKE VARPTR(I$)+ 2,NT ‘MSB of
426 FORI=@TO171 '174 bytes in the DATA statements address to 1%
439 READA 'Read them The argument L is the maximum

X . length of input to be enforced by the

448 IFA=2SSTHENA=NT *Change the NON-RELOCATABLE instructions routine. It may be a variable, a constant
450 POKESA+I+67,A 'Put the byte into memory or an expression. Therefore if L = 15 then
469 NEXTI 'Do the next one the routine will only accept 15 legal
479 'Point to the USR routine: characters of input from the keyboard. On
489 ONERRORGOTO3929: DEFUSR=SA:GOTO0S99 'DISK Systems return from the routine the actual number
499 POKE16526,8: POKE16527,NT 'CASSETTE Systems of characters entered by the operator is
S8 MS=NT*256 'Reference address as stated in article Sk”ed'nfhe\@”abb X
S19 IFMS>32767THENMS=MS-65536 'Adjust if necessary ¢ This demonstrates a very power-
1898 ul use of the POKE statement in conjunc-

Your program starts here

1919
1929
1939
1949
1959
1969
1979
1989
1999
1199
1119
1129
1139
1149
1159
1169
1179
1189
1199
1299

'This is a demonstration program
CLS:PRINT"What is your name? *j
L=29 Maximum permitted length
POKEMS+115,4S5 Halve period for which cursor is
POKEMS+136, 191 CHR$(191) at end of input
POKEMS+117,42 ’Set cursor "off" character to
GOSUB2999 Call subroutine to accept input
N$=1% ’Save contents of input - I% will be wiped next time
PRINT:PRINT"Your name is °“N$"."
PRINT"How o0ld are you, °*N$®"? ";
L=2 "Maximum length
POKEMS+96, 35 'Set cursor "on*
POKEMS+136, 49 End of input char to "<"
POKEMS+94, 189 'Double the original "off" delay
POKEMS+117, 32 ’Set cursor "off" character to " *
POKEMS+79,46: POKEMS+283, 46 ’Length of
GOSUB2999 'Call subroutine to accept
AGE=VAL (1I%) ’Save numeric value of I%$
PRINT:FRINTN®" is"AGE"years old."

END End of Program

’Buestion
"of+f"

g

"New question

character to "#°"

input char to "-.
input

1999 °
Subroutine to accept input from the keyboard and set up

I%
2999
2019
2929
2939
2949
2959

to point to this input.

Is="" Clear the variable to contain the input
X=USR (L) *Call routine - set max length of L
POKEVARPTR(I%) ,X 'Set length of I%$
POKEVARPTR(I%) +1,2 'LSB of address to I%
POKEVARPTR(IS$) +2,NT 'MSB of address to I%
RETURN 'Return from the subroutine

3999 °

Error trap to catch BASICs which have no DEFUSR statement
3919 'Resume execution only if error is in line 439
3929 IFERL=489THENRESUME499ELSEONERRORGOTOZ: END

tion with the VARPTR (or variable pointer)
function. If you have a string variable, for
example A$, and you type

PRINT VARPTR(A$)

the address where the length of the string
contained in A$ is stored in memory will
be returned. Therefore it follows that if you
type

PRINT PEEK(VARPTR(A$))

then the length of the string contained in
A$ will be returned. Similarly,

PRINT PEEK(VARPTR(AS$)+ 1)

will return the LSB of the starting address
of the contents of A$ in memory and
PRINT PEEK(VARPTR(AS)+ 2)

will return the MSB of the same address.
Proceeding further on this idea, if you let
F = PEEK(VARPTR(A$)+1 +
PEEK(VARPTR(AS$) +2) * 256

and then type

PRINT PEEK(F)

then the ASCII value of the first character
in A$ will be displayed.

The program uses this idea in the
last three POKE statements. Since 1$ is
the variable set up to contain the input and
X is the actual number of characters
entered by the operator, it seems
reasonable that the length of I$ should be
X. This is the purpose of the first POKE
statement. It merely POKEs X in the
memory location where the length of I1$
is stored. The purpose of the next two
POKEs is to point I$ to the input entered
by the operator which is located in a
known buffer set up in the machine
language routine. The BASIC program to
enter the routine is set up in such a way
as to always have the LSB of the address
containing the input as 2. The MSB of the
address is the MSB of the memory size
+ 1 (since the input is stored in the ad-
dress which is 2 bytes above the max-

PAGE 10 N

MICRO-80

VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983)

imum memory address accessible by
BASIC i.e. the memory size). The variable
NT contains the MSB of the memory size
and it is this value which is POKEd into
the MSB location. On completion of these
three POKEs, the variable I$ will contain
the input entered by the operator and may
be processed in the same manner as any
standard string variable (because that's all
it is). To process numeric data, the VAL
function of BASIC can be used.

e.g. if $1="23" then PRINT VAL(I$) will
return the number 23 as distinct from the
string 23"’

The routine should be POKEd in-
to memory very early on in your program
since it adjusts the memory size and
clears all variables on initialization. It only
uses about 250 bytes of top rnemory and
once it has been entered into memory the
data lines can be deleted if memory is
precious.

In order to be able to make use of
the many features of the routine, it is ad-
vantageous to set up a variable just after
the initialization sequence as follows:
MS = NT * 256

Once this has been done POKE-
ing different numbers into the following ad-
dresses allows you to change the settings
of the routine:

SETTING ADDRESS DEFAULT
Character to be displayed in-
dicating length of input MS+79,

MS + 203 136
Cursor character (when “on”) ~ MS+96 143
Cursor character (when “off') MS+ 117 32
Character to be displayed in-
dicating end of input MS+ 136 60
Cursor flashing speed—'on""
delay MS+94 90
—'off" delay MS+ 115 90

All settings listed here require in-
teger values in the range 0-255. In the
case of characters to be displayed, ensure
that the number you choose has a
character corresponding to it which is
displayable by your computer. Where two
addresses are listed, this means that both
addresses must be changed for the
feature to function properly.

There are two states in which the
cursor can be. It can either be “‘on’’ (like
it is for the length of time that you can
see it while it is flashing) or it can be ‘‘off”.
If these staies change at regular time in-
tervals (e.g. every half a second) the ef-
fect of a tlashing cursor is created. This
is what is meant by the cursor being ‘‘on’’
and ‘“‘off”’. We usually associate a flashing
cursor with a CHR$(143) graphics block
blinking on and off. In this case, the ‘“‘on”’
character is CHR$(143), the graphics
block, and the ‘‘off’ character is a
CHR$(32), a blank. This routine allows you
to define what the cursor’s “‘on’” and *‘off”’
characters are and by POKEing values into
the specified addresses you can change
these characters to what every you like.

By PCKEing different values into
the addresses specified above for the
“‘on’’ and “‘off”’ delay, you can increase or
decrease the flashing speed of the cur-
sor according to your requirements. To
see which values are currently set, all you
have to do is PEEK the addresses cor-
responding to the feature about which
your require information and this will tell
you the value of the setting. Always
remember that just because you have a
machine language routine stored up there
in protected memory, that doesn’'t mean
that you cannot modify its operation to suit
your own ends by using the POKE
statement.

In conclusion, | hope that this ar-
ticle has fulfilled the needs of those peo-
ple who requested it, and since this is my
first article, | would appreciate any feed-

back on it (whether positive or negative)
so that I will know whether | have covered
the requested material adequately.
58 Warnbro Beach Road,
SAFETY BAY, WA. 6169

I will be happy to try and answer
any queries that readers may have. Please
include a self-addressed stamped
envelope.

THE
ADVENTURE

SYSTEM

A SOFTWARE REVIEW

by Ed Grigonis
| !

Those of you who have ever con-
sidered writing an Adventure would know
that there are a number of ways of achiev-
ing this objective. These various methods
may be summarised as follows:—

(a) Dig into an existing Adventure
and change the existing data. The major
flaw with this method is that you are
restricted to the original Adventure format.

(b) Write a BASIC Adventure. This
is OK but you will find that memory limita-
tions (particularly in a 16K computer) will
prove frustratingly restrictive. The process
of actually coding the Adventure will also
detract from the task in hand.

(c) Use the Adventure Generator
included in ““The Captain 80 Book of
Basic Adventures’ to get rid of the
drudgery. This is OK as well, but you may
still be hampered by memory limitations.

(d) Learn machine language. If you
want the latest fantastic graphics Adven-
ture then this is the way to go. Be
pre{(aared to devote a lot of time to the
task!

If, on the other hand, your only ob-
jective is to write a great Adventure and
you aren't particularly interested in
graphics then you can always take the
easy way out. This will still involve learn-
ing a new computer language but the ef-
fort required is minimal when stacked up
against the alternatives.

What | am talking about is the
Adventure Language as contained in ‘*‘The
Adventure System’’ from the Alternative
Source.

First, a bit of history. Hands up all
those who think Scott Adams actually sat
down and wrote a completely new
machine language program for each of his
Adventures? Sorry, folks! 'Taint so!!! What
he actually did do, very early on, was to
sit down and write himself an Adventure
Editor in machine language. Most of his
Adventures were actually written by
feeding data into this program and letting
it do all the hack work. | suspect that
similar methods were used to get his
Adventures onto other computers.

Unfortunately, the Adventure Editor
used by Scott Adams has never been
available via the commercial market. Into
the picture stepped Allan Moluf, well
known author of programs for the TRS-80,
and Bruce Hansen, author of ‘‘Tasmon’’.
Allan Moluf produced a BASIC Adventure
Editor as well as a companion BASIC
Driver program to use the generated data
base. Subsequent machine language

enhancements were added by Bruce
Hansen. This first effort evolved into what
became known as ‘‘The Adventure
System’’.

Current versions of ‘“The Adven-
ture System’’ have been fully implemented
in machine language by Bruce Hansen
and are, so far, fully compatible with the
Scott Adams effort. ‘“The Adventure
System’’ is available to anyone who cares
to send The Alternative Source enough
money to buy it.

| mentioned that this system re-
quires you to learn a new language. What
follows is a discussion of the language and
how it is used to create an Adventure
which looks just like a Scott Adams’
original.

“The Adventure System’’ requires
you to specify the following details when
entering your data:

(a) Objects.

(b) Messages.

(c) Rooms.

(d) Vocabulary.

(e) Actions.

(f) Header information.

OBJECTS

Each object specified in the data
must contain three parameters: object
number, starting location and object
description.

The object number is specified by
the Adventure Editor when you first enter
the information. The first object will always
be numbered O (zero) and the last object
will always be numbered one less than the
total number of objects.

The starting location is the number
of the room in which the object will be
placed at the beginning of the Adventure,
i.e. if you specify 3 then the object would
initially be located in Room 3.

The object description tells you
what the object actually is, whether it can
be manipulated and whether or not it is
a treasure.

Consider the following three
objects:

0: 3 Pile of rocks

1: 6 Large rock/ROCK/
2: 4 *SPARKLING DIAMOND */DIAM/

Object number zero will be found
when the adventurer goes into Room 3
with the above description displayed by
the Adventure Driver. The object cannot
be manipulated.

Object number one will be found
in Room 5. The provision of the short
description between slashes tells the
Adventure Driver that this object may be
manipulated, ie. picked up, thrown,
whatever.

Object number two will be found
in Room 4. This object can be
manipulated. The leading asterisk in the
object description tells the Adventure
Driver that this object is a Treasure. Ob-
ject two would be taken into account for
scoring purposes if you placed it in the
Treasure Room.

As you can see, there is nothing
difficult about specifying objects.

Object number 13 is reserved for
the artificial light source, viz. lamp, mat-
ches, etc.

MESSAGES

Specifying messages is even
simpler than objects. The Adventure Editor
will specify suitable numbers when you
first enter the messages. Message O is
reserved so your messages will always
start at number one.

A sample message would appear
as follows:
1: There is a fly in my soup.

This message would be printed

VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983) MICRO-80

PAGE-11

whenever the driver was required to print
message number one.

ROOMS

The parameters required when
entering Room details into the Editor are
Room Number (given by the Editor),
allowable directions and Room
description.

When entering Room details the
Editor will ask for six Room numbers cor-
responding with Rooms which may be
entered from the current Room. These
numbers will also correspond with the
directions North, South, East, West, Up
and Down.

The Room description determines
what the Driver will print when you are in
a particular Room.

Consider the following two Room
descriptions:

1. 0 5 23 0 0 O large crate
2. 000 12 6 0 *I'm outside the shop

Room number one leads into
Rooms 5 and 23 by going South and East
respectively. The Driver would show South
and East as obvious when you are in
Room 1. The actual Room description
would be preceded by the phrase ‘‘You're
ina.

Room number two leads into
Rooms 12 and 6 by going West and Up
respectively. The leading asterisk in the
description prevents the default phrase
being printed.

It is important to note that the
allowable directions can be overridden by
allowing the adventurer to move to another
room by specifying a suitable command,
i.e. GO SHED.

If the adventurer moves in an illegal
direction when a light source is available,
he will receive the message ‘‘I can't go
in that direction’’. If he moves in an illegal
direction in the dark, he will be killed.

The last Room is reserved for a
“Limbo’ state when the person has been
killed, and may or may not have exits into
other rooms.

VOCABULARY
The vocabulary details all verbs
and nouns which may be used in the
Adventure.
Predefined Verbs are as follows:
0 AUTO
1 GO
10 GET
18 DROP
Predefined Nouns are:
ANY
NORTH
SOUTH
EAST
WEST
upP
DOWN
Primary vocabulary words may
have as many synonyms as required but
these must follow the relevant primary
word and must each be preceded by an
asterisk, i.e.

OORWN=O

7 DOG

8 *HOUND
9 *BASSET
ACTIONS

Actions are the heart of an Adven-
ture and are where newcomers to “The
Adventure System’ will have the most
difficulty.

Action entries contain the follow-
ing information:

Verb, Noun, Conditions, Commands and
Action Titles.

Action Titles simply document the
function of a particular entry. They act as
comments and may be omitted, although
as with any programming language, it is

a good idea to liberally comment source
code.

The verb and noun entered by the
adventurer are used to determine which
conditions and commands will be acted
on. For example, if the adventurer were
to enter ‘‘CLIMB TREE’’, the Driver would
only consider those Action entries with
the verb, noun combination of “CLIMB
TREE”. Of course, if “CYPRESS’’ had
been defined as a synonym of “TREE",
then “‘CLIMB CYPRESS’’ would also be
acceptable in the example given.

The “‘conditions’’ of an Action en-
try provide a list of test which must be
passed in order for the ‘‘commands’ of
the Action entry to be carried out. The
“‘commands’’ of the Action entry are only
carried out if all the ‘‘conditions’” are met.

Before describing a few Action en-
tries | will discuss the available ‘‘condi-
tions’” and ‘‘commands’’.

CONDITIONS
PAR This condition always passes and
is used to pass a parameter on-
to acommend. The analogy with
BASIC is the ‘DATA’ statement.
This conditions passes if the
adventurer is carrying the object
referred to, i.e. HAS 15.
passes if the adventurer is in the
same Room as the numbered
object, i.e. IN/W 15.
passes if the adventurer is in the
same Room as the object or is
carrying the object.
IN passes if the adventurer is in the
numbered Room, i.e. IN 5.
passes if the numbered object is
either held by the player or is in
another ROOM, ie. —IN/W 15
—HAVE passes if the player is not carry-
ing the numbered object.

HAS

IN/'W

AVL

—IN/W

—IN passes if the player is not in the
numbered Room.

BIT passes if the numbered bit flag
is set.

—BIT passes if the numbered bit flag
is cleared.

ANY passes if any objects are being
carried.

—ANY passes if no objects are being
carried.

—AVL passes if the numbered object is

in any other Room.
—RMO passes if the numbered object is
not in Room zero.

RMO passes if the numbered object is
in Room zero.

CT< = passes if the counter is less than
or equal to the number specified.

ORIG passes if the numbered object is

in the same room it started in.
—ORIG passes if the numbered object is
not in the same Room it started
in.
passes if the counter is equal to
the number specified.
(Any numbers input with a condition must
be in the range 0-1600)

CT=

COMMANDS
[0} This is a “‘null’”’ command.
1-99 Display messages 1-99.

GETX If this followed a PAR 5, then ob-

ject number 5 would be picked

up.
DROPX If this followed a PAR 5, then ob-
ject number 5 would be dropped.
GOTOY If PAR 22 was specified, the
player would be moved to Room
22

X-RMO PAR 5 would cause object 5 to
be moved to Room zero.

NIGHT Sets the light/darkness bit flag
(15). If the artificial light source
is unavailable the Room will be
dark and no Room description
will be given.

DAY

Clears the light/d.
SETZ g larkness: flag.

PAR 4 would cause bit flag
number 4 to be set.
X—>RMO
PAR 5 would cause object 5 to
be moved to Room zero.
PAR 4 would cause bit flag
number 4 to be cleared.
Clears the light/darkness flag,
moves the player to the last
Room and tells him he is dead.
PAR 5 PAR 22 would cause ob-
ject number 5 to be moved to
Room number 22.
Indicate that the game is over
and enquire about a replay.
DSPRM Display current room if it is light
or the artificial light source is pre-
sent, else display “‘It’s too dark
to see”.
SCORE Display number of treasures in
the Treasure Room and the
percentage of treasures stored.

CLRZ
DEAD

X—>Y

FINI

INV List inventory.

SETO Set bit flag zero.

CLRO Clear big flag zero.

FiLL Refill the artificial light source.

CLS Has no effect but was included
to maintain compatibility with the
original BASIC system.

SAVE Save the game to disk or tape
depending on the version.

EXX,X PAR 5 PAR 15 wolt'1 cause the
location of object number 5 to be
swapped with the location of the
object number 15.

CONT Allows continuation of an Action
entry.

AGETX PAR 5 would enable object
number 5 to be obtained even if
the carry limit has been
exceeded.

BYX—>X
PAR 5 PAR 15 would cause ob-
jectnumber 5 to be placed in the
same Room as object number
15.

CTm Subtract one from the counter
value.

DSPCT Display current value of the
counter.

CT<—N

PAR 100 would set the counter
to a value of 100.

EXRMO Exchange the current Room
number with the Room number
held in Alternate Room Register
zero.

EXMCT PAR 5 would cause the value of
the current counter to be ex-
changed with counter number 5.

CT+ PAR 60 would add 60 to the cur-
rent counter.

CT-N PAR 10 would subtract 10 from
the current counter.

SAYW Display the noun (second word)

input by the player.

SAYCR Start a new line on the display.
EXC,CR PAR 2 would cause the current
Room number to be swapped for
the Room number currently held
in Alternate Room Register
number 2.

Pause for about 1 second before
going on to next command.

DELAY

EXAMPLES

To discuss all of the possibilities
inherent in the above would take a year's
issues of this magazine so | will just give
a few examples from the Manual.
0: AUTO 100 -BIT'1 PAR1 O O O
MSG 1 SETZ — - INTRO

The O: shows that this is Action O.
AUTO 100 causes this action to be con-
sidered all of the time. When the Adven-
ture is started, all bit flags are clear. In this
case - BIT 1 would therefore be true.
PAR 1 passes the parameter 1 to the

PAGE 12

MICRO-80

VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983)

commands. The O’s indicate that there are
no more conditions to be met. MSG 1
causes Message Number 1 to be printed.
SETZ obtains the parameter of 1 from the
PAR 1 condition and therefore sets bit flag
number 1. Unless bit flag number 1 is
cleared at a later stage by a different com-
mand, this is the last time this command
will be executed. The dashes indicate that
there are no more commands in the Ac-
tion entry. INTRO is simply a comment.
11: GET KEY IN'W 12 PAR 12
O O O GET MSGSs5 — —
If the player were to enter “GET
KEY’ this Action entry would be con-
sidered. If the player is in the same Room
as the key (IN/W 12) the parameter of 12
(presumably the object number of the key)
would be passed to the GETX command
which would cause the player to pick up
the key. Message 5 would then be printed.
Note that if the player was already carry-
ing the key he would automatically get the
message ‘‘I'm already carrying it
14: GODOORIN2 PAR3 0O O O
GOTOY MSG 5 — —
If the player was to enter ‘G
DOOR’’ then, provided he was currently
in Room 2, the parameter of 3 would be
passed to the GOTOY command and the
player would be moved to Room number
3. Message number 5 would be printed.
These are only three examples.
However, by studying these examples and
also the conditions and commands sum-
marised earlier, you will see that the scope
provided within ‘‘The Adventure System”’
is indeed comprehensive.

HEADERS
The best way to explain the header
is to give an example from the manual.
Adventure Z Version 1.01 14500

bytes free
Bytes under 16K = 7523
#0BJ #ACT #VOC #RM
14 41 22 8
MAX BEG #TR WLEN
5 1 1 4
TIME #MEG TR-RM
999 16 7

The name of the Adventure is
“Adventure Z’’ and the version number is
1.01. There are currently 14,500 bytes
free, although for any particular Adventure
this would uepend on your computer’s
configuration and the presence of any
high memory drivers. There would be
7523 bytes free if this Adventure was
entered as a SYSTEM tape in a 16K com-
puter. There are 14 objects and 41 ac-
tions. There are 22 verbs and 22 nouns
(although one might be less). There are
8 Rooms. The adventurer can carry a
maximum of 5 objects. The adventurer will
begin in Room number 1. There is only
one treasure. The number of significant
letters in nouns and verbs is four. The time
limit is 999 moves. There are 16
messages. The treasure room is Room
number 7.

All of this information is entered
when you commence compiling the
Adventure.

ADVEDT LIMITATIONS
The following limitations (if you can

call them that) are imposed on the data

entered into the ADVEDT program:

(1) Maximum of 500 Action entries.

(2) Maximum of 150 vocabulary entries
(150 verbs and 150 nouns).

(3) Maximum of 100 rooms.

(4) Maximum of 99 messages.

(5) Maximum of 250 objects.

(6) Maximum characters in description of
object, room or message is 255.

(7) Maximum word length of vocabulary
words is 7 characters.

(8) Maximum length of Action titles is 20
characters.

To give you a comparison, the
following are the maximums from the
Scott Adams Adventures:

270 Action entries.
80 Vocabulary words.
100 Objects.

WHEREDAYAGEDDIT???

As far as | am aware, ‘‘The Adven-
ture System’ is only available from The
Alternate Source, 704 N. Pennsylvania,
LANSING, MI. 48906 U.S.A. The cost of
the program is $US49.95 plus postage.
If you write to them to ask about the cost
of airmail, make sure you enclose some
international reply coupons.

WADDAYAGET???

Before | tell you what you get, |
should point out that you will need to have
48K of RAM available. There are versions,
however, for both disk and tape.

If you order the tape version you
will get two programs. ADVEDT — the ac-
tual Adventure Editor and ADVTT which
will enable you to create a SYSTEM tape
from any Adventure data base you create.
The disk version also includes ADV which
is a disk based Adventure driver. ADVEDT
in both versions contains ADV so when
you are writing Adventures you can jump
back and forth between the Editor and
Driver.

Each version also includes a short
Adventure which is fully explained in the
documentation as well as two full length
Adventures.

The documentation is supplied in
a sturdy black vinyl binder. The original
manual was somewhat hard to follow in
parts. However, there is now a much more
detailed manual which just about ranks
alongside Bruce Hansen's excellent
“TASMON’’ documentation for ease of
use and clarity.

WHAT? IS THERE MORE?

Also included is Issue No. 1 of the
Auggies newsletter “Augment’’. If you buy
“The Adventure System’’ you are entitled
to join the Auggies (Adventure User
Group). For $US12.00 per year (extra for
airmail) you receive the ‘Augment’’
quarterly which includes at least one
Adventure. You are eligible to market your
Adventures through The Alternate Source,
provided they are suitable, and thereby
derive royalties. You can also purchase any
Adventures created with ‘“The Adventure
System’” at a discount.

The Alternate Source also have the
following Adventure tilities available for
purchase. ADVTAPE is similar to ADVTT
and will create a SYSTEM tape from a disk
data base. This avoids having to save the
data base to tape first. ADVCOPY will take
the Adventure off a protected Scott
Adams Adventure disk and place it on an
unprotected disk. ADVDUMP will read in
a tape Adventure and dump the data base
to disk. You have to be an Auggie to get
these tilities.

| could quite easily go for a lot
longer. There is so much that | haven't
even touched on.

To summarise, if you like playing
Adventures or if you are at all interested
in writing Adventures, then you should
definitely buy ‘‘The Adventure System’’
You won't regret it!

A REVIEW OF
THE TRS-80
MC-10

(COLOUR COMPUTER)

by Charlie Bartlett
[|

It never ceases to amaze me how
computers are getting smaller all the time.
When the Model 1 TRS-80 came out, it
was thought to be incredible that a com-
puter was actually crammed underneath
the keyboard. Now we have the TRS-80
MC-10 upon us and it makes the Model
1 TRS-80 look like an Elephant or maybe
a Dinosaur would be more appropriate
consindering that the Model 1 is out of
production.

The MC-10 is 2 inches high, 82
inches long and 7 inches wide, (51mm x
216mm x 178mm), and weighs in at 29%2
0zs (836.32 grams). The Microprocessor
is an 6803 and is not fussy about spaces
around keywords as is the 6809E in the
Colour Computer, which is just as well
considering the 3142 bytes of memory
available in the MC-10. | was quite surpris-
ed at the number of commands that such
a small machine supports, in fact it has
NEARLY as many commands as the unex-
tended Basic in the Colour Computer.
After some digging around in the memory
| also found some commands that it sup-
ports that are NOT in the manual, more
on this in a minute. Listed below are com-
mands that are available, (as listed in the
manual).

ABS Computes absolute value.
ASC Returns ASCIl code of first
character of string.

CHR$ Returns character for ASCII or
graphics code.

CLEAR Reserves bytes of string
storage.

CLOAD Loads Basic program from
cassette.

CLOAD* Loads numberic datainto an ar-
ray from cassette.

CLS(x) Clears display to specified col-
our “x”.
CONT Continues program execution if

BREAK has been pressed.
COS Returns cosine.
CSAVE Saves a Basic program to tape.
CSAVE* Save contents of a numeric ar-
ray to cassette:
DATA Stores data in your program.

DIM Dimensions an array.

END Ends program.

EXP Returns natural exponential
| Exponentiation character.
FOR : Creates

TO : a loop

NEXT :in a program.

STEP : with step to increment.

GOSUB Sends computer to subroutine.

GOTO Sends computer to a line.

IF/THEN Test a relationship.

INKEY$ Strobes the keyboard and
returns the key being pressed.

INPUT Computer waits for input from

the keyboard.

INT Converts a number to an
integer.

VOLUME 4 No 4 (NOVEMBER/DECEMBER 1983)

MICRO-80

PAGE 13

LEFT$ Returns left portion of string.

LEN Returns the number of
characters in a string.

LET Assigns value to variable
(optional).

LIST Lists program lines on screen.

LLIST Lists program lines to printer.

LOG Returns natural logarithm.

LPRINT Prints an item on the printer.

MEM Returns the amount of free
memory.

MID$ Returns a substring of another
string.

NEW Erases memory contents.

ON x GOSUB
Multi-way branch to specified
subroutines.

ON x GOTO
Multi-way branch to specified
lines.

PEEK Returns contents of a memory
location.

POKE Puts value into specified RAM
location.

POINT Tests whether a graphic cell is
on or off.

PRINT Prints to screen, abbreviation of
? is available.

TAB Moves cursor to specified

column.
PRINT @ Print at specified location.
READ
line.
REM Remark.
RESET Erase dot that was SET.
RESTORE
Resets DATA pointer.

RETURN Returns computer from a

subroutine.

RIGHT$ Returns right portion of string.

RND Return pseudo random number.

RUN Executive a program.

SET Sets a dot at a specified loca-
tion to a specified colour.

SGN Return sign of specified
number.

SKIPF Skips to end of next program
on cassette.

SIN Returns sine.

SOUND Sound specified tone for
specified duration.

STOP Stops execution of program.

STR$ Converts a number to a string.

SQR Returns the square root of a
number.

TAN Returns tangent.

VAL Converts a string to a number.

Quite a powerful Basic for its size
isn't it, the following command are not
listed in the manual or anywhere else for

that matter.

Reads the next item in a DATA

is the case it would seem that Tandy have
been very crafty, you can load a machine
language tape but you cannot save one.
Now you ask, if that is the case how did
| determine that CLOADM works, since
there are no machine language programs
for the MC-10 at this time.

Well for a start CLOADM does not
return a syntax error, it switches on the
cassette, clears the screen and prints an
“S’" at the top of the screen indicating
that it is searching. If a BASIC program is
encountered it returns an FM error (file
mode). If a machine language tape from
the Colour Computer is encountered it
happily loads in the file name and only fails
with an I/O error when the 6809E code
is encountered. Which leads me to believe
that given a MC-10 machine language file,
it would load.

What use are VARPTR, EXEC and
USR, well even if you cannot save a pure
machine language program, there is no
reason why you could not have a BASIC
program with machine language poked in-
to the lines with the help of VARPTR or
you could have your machine language in
DATA statements and poke this into
memory and then EXEC to execute.

Video Memory is from 16384 to
16895, other addresses also work in
tandem, the reason for this is not
understood. Some keyboard addresses
are in the region of 16940 and up, for ex-
ample the address 16952 is used by the
space bar and returns a value of 247
when the space bar is pressed, if you
write a program where you want
something to happen — FOR AS LONG
AS the key is held instead of IF the key
is pressed then you can read this memory
location for the value and if the value is
found poke zero into it so that on the next
pass, if the key is still held down it will
return the original value and if not it will
return zero, this procedure applies to the
other memory locations in this area.

Blindly poking into various memory
locations brought interesting responses
that would seem to indicate that with
some detailed information higher resolu-
tion graphics might be possible. Try pok-
ing location 20 (decimal) with different
values to see what | mean, (it locks the
machine up though and you will have to
press the reset button).

Having a Colour Computer here, |
thought | could save some typing time by
loading a Colour Computer Basic program,
| thought | was on to a good thing for a
while since the Colour Computer and the

the pin connections are the same. It also
has an RS232 DIN socket, this also has
the same pin configuration as the Colour
Computer.

To sum up, it is a very nice little
machine at a reasonable price, the only
thing lacking at the moment seems to be
the software.

INPUT/ OUTPUT

FROM: R.J. Mclean-Formartin, Qld.

| own a System-80 on which | am
using a Tandy green screen monitor. At
times the display shivers and this makes
it difficult to read. However, if a key is
pressed (a character entered), or the
NEWLINE key is depressed the shivering
stops. Would you have any idea of a solu-
tion to this problem?

(It sounds like you have an inter-
mittent fault of some sort and you should
refer the problem to a qualified technician
for repair. — Ed.)

FROM: Mr. G. Whitcher—Yunderup, W.A.

It would be helpful if programs that
use USR calls were printed with the
necessary information to convert from
Level 2 BASIC to Disk BASIC for those
of us who are too mean to buy the Disk
subscription for the sake .. a few pro-
grams which may be of interest. | only
subscribe to the casette subscription for
the ease and not having to type the pro-
grams that interest me.

(Your point is well taken and we
would like to include the information need-
ed to modify Level 2 programs with USR
routines so that they will work with Disk
BASIC but we do not have the time to
dissect machine language routines that
are only provided in object format or the
BASIC equivalent. If the program author
would supply commented assembly
language source code for the USR
routine, we would be happy to publish that
along with the program listing and any
relevant suggestions for disk users.

RECALL on the disk version of
SOFTPAK is intended to overcome this
difficulty in most cases by running the
Level 2 program in the Level 2 environ-
ment. However, there are those cases
where modifying the program for disk
BASIC is the preferred solution.—Ed.)

FROM: Mr. J. Linton—Malabar, N.S.W.
As the SYSTEM 80 is going out
of production, is there an alternative ex-

VARPIR This command has the normal ~ MC-10 will both load each other’s tapes. pansion system to allow update to disk
syntax of A= VARPTR (B$) and However, unfortunately different values are drive or do | have to buy a SYSTEM 80
it works, so | don’'t know why used for the keywords in both machines expansion unit before they go out of
it was not mentioned. so what is loaded in has the same line production?

USR This command is supported by ~ numbers but all of the keywords are swap- {By now you will probably know
the Basic interpreter though at ped around, pity!! the answer to this question as it is
the moment it is not much use The MC-10 has a DIN socket for discussed in the Editorial. Briefly,
until some technical information a cassette, no cassette cable is supplied, MICRO-80 will have expansion inter-
becomes available to find out but if you have a Model 1 or a Colour faces for the System 80 available about
where to poke the entry points. Computer you can use the same cable as the end of February, 1984. —)

EXEC This command also has the

normal syntax of EXEC addr
where “‘addr’ is the entry point
of a machine language program
or subroutine.

CLOADM This command will load a
machine language program in-
to memory and has the syntax
of CLOADM ‘‘filespec’” or
CLOADM ‘“‘filespec”, addr
where ‘“‘addr’’ is the position in
memory that the routine is to
be loaded to.

As far as | could determine the
command CSAVEM is NOT supported,
(that is unless it has a very different syn-
tax from normal), | tried several variations
on the syntax and nothing worked. If that

“Australia II"" broke the longest winning-
streak in sporting history by defeating the
American yacht ‘Liberty’ four wins to
three. Every Australian can now relive that
day (or should | say, early morning!) by
playing the Australia’'s Cup game!!! Up to
six people can play and place bets on the
outcome of the races. Complete instruc-
tions on how to play are included in the
program.

SOFTWARE

AUSTRALIA’S CUP
—L2/16K

by Carl Cranstone HOW TO GET THE PROGRAM

RUNNING(?)
To get the program ‘Australia’'s Cup’
running, those of you who are entering the

Australia recently won the
America’'s Cup which the Americans had
held for 132 years. The Australian yacht

PAGE 14

MICRO-80

VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983)

program from the magazine will have to
follow my instructions below to the letter
(or at least to the word!). There are three
programs that | have written for this game.
The first AUSCUP/LST is the Australia’'s
Cup program in its raw form (i.e. it con-
tains no graphics). The second is
AUSCUP/DAT which is a program that
creates the program lines that contain the
graphics. The third is AUSCUP/LNW
which is an LNWBASIC Program to enable
LNW-80 owners to see Australia's Cup in
colour.

1. AUSCUP/DAT

This program reads in the data for
the graphics and POKEs it into memory
— creating assembled strings. (Exactly
the same as those created by Charlie
Bartlett's Graphic Assembler program —
issue 5 April 1980).
***STEP ONE: Type in the AUSCUP/DAT
program and RUN it
***STEP TWO: delete lines 1 & 2
***type LIST.— you should see some-
thing resembling a garbaged program.
Don’t worry! This garbage is really
assembled strings.
***SAVE or CSAVE
immediately!!!

the strings

2. AUSCUP/LST

This is the program which uses the
strings.
***STEP THREE: LOAD OR CLOAD the
strings and type in this program around
the strings. You will notice that lines 1350
and 1560 in this program are reserved for
the strings.
***STEP FOUR: When you have typed
in the program around the strings SAVE
or CSAVE it immediately. (This program will
now be known as AUSCUP/BAS).
WARNING: BE VERY CAREFUL THAT
YOU DO NOT ACCIDENTALLY ERASE A
LINE WITH AN ASSEMBLED STRING IN
IT OREDIT IT. THIS CAN RUIN ALL OF
YOUR HARD WORK!!!
***STEP FIVE: LOAD or CLOAD the pro-
gram in and RUN it. The first thing you
should see is a large map of Australia. You
must press ENTER to continue into the
game. If you don'’t, the game will go into
Demo Mode. To start the game you must
press ENTE 7 from the map. If you press
ENTER from the Demo Mode, you will
return to the map.

3. AUSCUP/LNW

This is for the benefit of LNW-80
owners who want to see Australia's Cup
in colour.

***STEP SIX: Type in the AUSCUP/LNW
program and RUN it.

***STEP SEVEN: Press Break and then
type in the following line:
FLS:SAVE*“AUSCUP/GRF:d”:
PLOAD“AUSCUP/GRF:d”

where :d is drive number.

This will fill the screen enabling
you to see the colour. The /GRF file will
be saved and reloaded again so that you
can verify that you have a good save.

For those who don’t want colour,
you will have to delete the following
statements from the program:

Line 10 ‘OUT254,0:°
Line 140 ‘OUT254,116:’
Line 5630 ‘OUT254,0:’
Line 630 ‘OUT254,0:’

A typical chain file to load in the
colour would be as follows:

(Newdos80 2.0 users use
CHAINBLD/BAS)

LNWBASIC PLOAD“ASUCUP/GRF”’
CMD*'S =BASIC”

RUN“AUSCUP/BAS”’

NOTE: AUSCUP/BAS is the resulting pro-

gram when AUSCUP/DAT and AUSCUP/
LST have been merged into one program.

GRAFX
L2/32K Disk

by Bob Wilson

WHAT IS GRAFX?

GRAFX is a tool for use in
generating bold titles or graphics for in-
corporation in programs.

Once you have designed your
titles or graphics, GRAFX will write a
BASIC program to reproduce them.

INITIAL SET-UP

If you are typing this program in
from the magazine, you must first type in
the INIT program and run it. The INIT Pro-
gram creates a disk file called BIGLTRS.
This file gives GRAFX the ability to pro-
duce the big letters. GRAFX will require
the BIGLTRS file to be on disk before it
will run; once the INIT program has been
run you will not need it again. If you are
a disk subscriber you will not need to run
INIT as the BIGLTRS file is already on your
disk. The INIT program is also on the disk
in case you should want to use it.

Make sure you have plenty of free
disk space for the programs that GRAFX
will write for you. Better still, prepare a
disk containing only your operating
system, GRAFX and BIGLTRS and initialize
your AUTO command as BASIC
RUN“GRAFX’".

If you use NEWDOS 80 Ver 2 as
your DOS you can run the program as it
is. If you use another DOS, you will need
to delete the last statement from line 80
of the program. T he statement to delete is
CMD"‘F’,DELETE 10-70

Your Disk is now ready to run
GRAFX on power-up or RESET.

USING GRAFX

Power-up or RESET with your
GRAFX Disk in Drive O.

GRAFX will grab as much of your
memory as possible for use in string
manipulation when it writes programs. It
will do this calculation for itself. The pro-
gram writing operation will take longer on
a 32K '80 than on a larger machine,
because the string area management
functions (when string space becomes
full) will operate more often.

Fifteen lines of your screen will be
available for you to use in designing your
titles or graphics. The bottom line is us-
ed for prompting you and to advise you
of the current mode of operation.

After the initialization routine, the
program will display the COMMAND
MODE prompt line on the screen.

GRAFX COMMANDS
In COMMAND MODE the prompt
line displayed is:
(C)lear (G)rafx (H)uge (S)lave (R)ecall
(P)rogram (E)nd
The appropriate letter
(CGHSRP or E)will select the various
functions:
GRAFX mode
In GRAFX MODE you have several
options available:
(C)ursor Mode
: Use the arrow keys to
move the cursor
(D)raw Mode
: Use arrows to draw lines
(E)rase Mode
: Use arrows to erase lines
(T)ext Mode
Enables text to be
entered starting at the cur-
rent cursor position

e(X)it
: Returns you to COM-
MAND MODE.

HUGE LETTERS MODE:
Enables HUGE
entered for titles.
Screen capacity is 80 characters
and the Character Set available is:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
123456789!7;:,.

letters to be

NOTES

Input always starts at the top left
of the screen.

If you reach the bottom of the
screen, the top line will be scrolled off the
screen and lost.

The screen will be cleared on
entering this mode. Enter HUGE LET
TERS BEFORE entering GRAPHICS.

To exit this mode enter SHIFT/
BACKSPACE.

SAVE and RECALL MODES:

On selecting either of these
modes you will be asked for a screen
number.

The screen contents (15 lines) will
be SAVED to, or RECALLED from, the
screen memory you select and you will be
returned to command mode.

PROGRAM MODE

You will be asked for one letter to
be included in the FILESPEC. Your letter
will appear as the ‘x’ in the followiing
filespec:
TITLEX/GFX

A BASIC program will be written to
reproduce the current screen constants,
and will be dumped to disk in ASCII
format.

The program created will contain
4 lines which will create and print a series
of strings from data contained in the
subsequent lines.

The END command terminates the
running of GRAFX.

SOURCE UTILITY
Model 3 Disk

by T. Domigan

SOURCE/BAS is a program to
transfer EDTASM source files between
tape and disk for Model 3 users of
NEWDOSS80 V2.0.

APPARAT discontinued support for
Tape I/O in EDTASM for the Model 3 as
they were concerned with the unreliabili-
ty of tape. Whilst object code can be mov-
ed between tape and disk with LMOFF-
SET, source files cannot. SOURCE/BAS
fills this gap and also allows the copying
of source tapes.

To use SOURCE/BAS enter the
command ‘“‘BASIC IV’ from DOS. This
special command is necessary as a non-
standard logical record length is used to
get the code from disk. Once you have
entered BASIC, “RUN’’ the program.

The machine language section
resides in the bootstrap stack area and
therefore does not require memory size
to be set. However, memory is protected
by the program in line 20, from 8000H to
FOOOH for the storage of up to 26K of
text.

This program is fully-menu driven
and is self-explanatory.

Tape I/O can be made at high or
low speed as desired. Disk I/0 will tend
to be slow so have patience with large
files.

Always exit the program via menu
option 6 as this ensures that the disk file
is closed and BASIC is correctly restored.

VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983)

MICRO-80

PAGE 15

LVAR
L2/32K

by Tim Fish

ray variables are not listed.

LOADING INSTRUCTIONS:
MEMORY SIZE 32320
SYSTEM *? LVAR

*? /ENTER or /32321

tains a daft demo program)
RUN ENTER . ..
... (BREAK) NAME ENTER

TRACK RACER
Hitachi Peach

by D.C. Kelly

program will display:
CRASH
DEL = FINISH

HI-RES TEXT
Colour Computer

This is an extremely useful debug-
ging tool for BASIC programs. The pro-
gram resides at the top of memory but,
on first being run, it initialises the DOS exit
for the Disk BASIC verb NAME to a jump
instruction to its own start address. Type
NAME from ROM BASIC now, instead of
giving you an L3 ERROR, gives you a list
of all the single precision, double preci-
sion, integer and string variables used in
your program and their values. So when
your BASIC program fouls up press
BREAK (if necessary) and type NAME.
The variables are displayed in “‘pages’ of
15. Press any key for the next page. Ar-

> — |oad your BASIC program (tape con-

In this race game you must steer your rac-
ing car down the track while avoiding the
oncoming cars. You will crash if you run
off the track or hit an oncoming car. The
further you travel the greater your score.
You steer the car using the left and right
arrow keys. After you have crashed the

INS = PLAY AGAIN

If you want another game press
the INS key, otherwise press the DEL key.

it can ALL be loaded with one (C)LOAD,
as if the machine code where not there!

This program is fully compatible
with disk systems and 16K or 32K of
memory. With it, you can use the PRINT @
command as you would on the text screen
normally if the graphics screen is PMODE
4.

You can also use it with any start
page, and there are some interesting ef-
fects in the coarser PMODE’'s — how
about video titles using PMODEO or 2?

However, the PRINT @ statements
will not work normally except in PMODE
4. If you crash out of the program abnor-
mally, and are still on the graphics screen,
just type A=USR1(0) to get back to the
text screen.

Type in the demo BASIC program
— it is certainly simple, but does give you
an idea of what is possible.

PROGRAM DESCRIPTION

As the program is written in
machine code it is very fast, and you
would be hard up to find any slow down
from that of the BASIC interpreter acting
normally.

The source code is well com-
mented and the remarks here are only in-
tended for amplification.

The source code from line 120 to
line 270 is all for relocating the machine
code invisibly behind the BASIC program
— invisible to the BASIC interpreter that
is. Once that relocation is done the loader
is dispensed with — in fact, it cannot be
re-used — see line 250.

Lines 330 to 550 are for keeping
tabs on the USR calls from the BASIC pro-
gram. There is provision for two USR calls.
The first (USRO) turns on the graphics
display, and the second (USR1) turns it off.
The code in this section is there to make
sure that all errors from errant BASIC pro-
grammers are properly trapped!

The main code starts at line 610,
and is commented extensively in the
listing. You will note that no control
characters are allowed in the listing, but
these could be easily added if yo uwish-
ed to work out their parameters for the
look up table.

SET UP
1. Take very careful note of the addresses

4. EXEC the machine code program. This
places it behind the BASIC program
and the WHOLE program can now be

(C)SAVE'd like a normal BASIC
Program.

5. RUN you new creation — | hope it
works!!

THE KILLER SATELLITE
(COLOUR)

by Scott Edwards

“The Killer Satellite’’ is an original
action game for the 16K, extended basic,
colour computer. It should run oin all col-
our computers with extended colour
basic.

A war satellite in space has mal-
functioned and is sending its deadly
cosmic rays at Earth. You must protect
Earth by destroying these rays until the
satellit runs out of energy.

The cosmic rays are represented
by a random sequence of coloured
squares, all rapidly approaching your ship.
The ‘“‘colour’ of your ship can be varied
by pressing the space bar. By matching
the colour of your ship to the components
of the beam, portions of the beam (or ray)
can be destroyed. If you Jestroy the
whole ray, you go to the next level where
a new ray moves faster. If the deadly beam
reaches your ship, you are destroyed.

To begin the game you have 3
ships, and extra ships are obtained as you
progress through the various levels. If all
of your ships are destroyed before the
satellite fails, the satellite destroys the
Earth and you lose. On the other hand if
you can protect the Eart for 11 rounds, the
satellite runs out of power and the Earth
is saved.

All this makes for an entertaining
game which becomes quite difficult at the
higher levels. For added interest a score
is displayed at all times. If a ship is
destroyed you continue on the same level
until you are successful or otherwise.

To use the program simply type
RUN, read the introduction, then hold
down any key until the game begins. From
then on simply use the spacebar to match
the colours — Good Luck.

in the object code in the first twenty
or so lines of code. If you are using Tan-

The functioning of the program is

by Geoffrey D. Williamson explained below:

dy’s EDTASM + to assemble this pro- Line 60, 70:
One of the most annoying features gram you MUST force the assembler Generate initial display
of the CoCo is its lack of a true lower case to use the direct page mode of ad- Line 90, 100:

dressing by using the < symbol. If you
do not, the assembler will default to ex-
tended page addressing. This will
slightly slow the code down, but more
importantly, the addresses | have given
in the demonstration program for the
USR calls (and for the loader program)
will be incorrect.

There is nothing sacrosanct

display. It does not take too many hours
in front of the monitor to become
thoroughly annoyed with Tandy’s excuse
for lower case!

Unfortunately, this is fixed by hard-
ware, and one may resort to alternative
hardware lower case drivers to overcome
this problem. Alas, these are expensive;
yet there is a cheap way out of this dilem-

Generate the strings for the
number of ships left, and the col-
our sequence of your ship.
Lines 110, 120:
Complete initial display
Lines 130-150:
Print scenario
Lines 160, 170, 180:
Flash screen, wait for continue

ma, thanks to MICRO-80; Just type in the about the values in the program, but be Line 200:
following program and you will be able to prepared to spend a fair bit of time in Initializes variables
have true upper and lower case on the debugging if you do not stick slavishly Line 210:

screen at the same time. Not only that, to them!
but this text is usable at the same time 2. Once you have the machine code safe-
as graphics -— here come some graphic ly assembled (and backed up) CLEAR
adventures!! some space at the top of RAM — if you
One final feature of this program have 16K try CLEAR200,&H3000: or
is its relocatability —- by this. we mean it CLEAR200,&4H7000 for 32K.
can live anywhere in memory quite hap- (C)LOADM the machine code into this
pily, as it is written in position-independent area with the APPROPRIATE OFFSET.
code which is much easier to do on the Remember, it is ORG'd at zero. If you
6809 than most 8 bit microprocessors. forget the offset, you will bring down
Because of this relocatability you your whole system!
can ‘hide’ the machine code program 3. Now that the machine code is safely
behind the BASIC program — this is tucked away in protected RAM you can
achieved by a little driver attached to the load in your BASIC program. Once you
program proper. The advantage of all this are happy with the latter you can go to
is that once the whole program is set up, the next step.

Go to round generation

Lines 240-290:
Loops for colour mate between
ship and ray by using INSTR (),
then uses the MID$ () functions
availble in BASIC to manipulate the
ray string.

Lines 310, 320:
Update display, and makes sound
effects.

Line 340:
If 1st character of A$ = blank, ray
is destroyed, you win this round.

Line 370:
Update variables, if ray at your ship
you lose round.

MICRO-80

VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983)

PAGE 16
Line 390: Line 690, 700: all available drives for the file starting with
Go to beginning of loop — con- Ancther Game? drive 0.
tinue round. Line 720: In the case of a cassette load the
Lines 420-480: You Won. program will read in the name of the first

Check for spacebar being press-
ed, and change ship colour, if
necessary. Also controls speed of
ray.
Lire 500:
New round, if you complete 11
rounds then you've won, otherwise
generate stars.
Line 510:
If 6 successful rounds, get extra
ship.
Line 520:
Print satellite
Line 530:
Print score, print round, generate
ray.
Line 540:
Time delay and colour sequence.
Line 560:
Print remaining ships.
Line 580:
Destroy ship, same round again.
Line 690:
If last ship you lose
Lines 600-680:
You lost, wait for key.

Variable List:
A% Cosmic Ray
B% Colour sequence of ship

Q$ Displayed portion of A$ (usually)

X Position of left portion of Q% on
screen

SH Number of ships

R Number of rounds

M Score

G, 8V, S
Determines speed of ray

St Used to determine when to get
new ship

E Length of Q$

C Determines colour of ship

Y1, X1 Position of starts

zZ, T 2Z V
Variables used for — next loops.
N.B. The use of INSTR$ () and

MID$ () = ..., both functions of ex-

tended BASIC allow this program to run
at a reasonable speed. Therefore this pro-
gram would be difficult to modify for com-
puters without these special string handl-
ing routines.

HOUSEHOLD ACCOUNTING VER 4.2 & VER 5.0

This is an all new version of the
earlier Household Accounts program
published in MICRO-80 magazine. Input
has been simplified, all bugs eliminated
and, the program will load and save to disk
or tape as required. The program will carry
out many of the bookkeeping functions for
a small business.

LOADING FROM CASSETTE
The program is written in BASIC.
Simply position the tape to the start of the

program, type LOAD, press RETURN and
press the PLAY key on the recorder. The
program will then load. When loaded, type
RUN and press RETURN. The Household
Accounting copyright message will be
displayed together with the program
menu.

FUNCTIONS
The following MENU is displayed
when the program starts:

* ** HOUSEHOLD ACCOUNTTINSG VER 4.0 =*
* ¥ * (C) 07/07/83 MICRO-82¢9 PTY LTD =
MENU

1 = KEYBOARD INPUT : S = SAVE DATA
2 = LOAD DATA H 6 = PRINT JOURNALS
3 = READ "“=MORY H 7 = LINEPRINTER UTILITY
4 = EDIT MEMORY H 8 = LEDGER ACCOUNTS
1. KEYBOARD INPUT GJ General Journal

This function is for the input of
data and starts from record 1 and works
up to the maximum record number for
your system. Re-entry to this function
when data is still resident in memory will
cause the program to resume at the next
record after your last entry (this also ap-
plies where a file is loaded from disk or
tape). Your input is displayed next to the
request for details. The cursor is displayed
at the point where your entry is going to
take place. The asterisks in each input
field indicate the maximum number of
characters that the field will accept. When
a field has been filled, your input will move
to the next field. You do not have to fill
each field. When you have entered the in-
formation you require simply press
RETURN and the program will move on
to the next field. The only exception to
this is the first input of DATE * */**/** |f
RETURN is pressed in response to the
first input field the program will return you
to the menu.

The field ““PREFIX’ is used to in-
dicate to the program the ledger into
which the record is to be placed. This
should be one of the following:

CP Cash Payments Journal
CR Cash Received Journal

SJ Sales Journal
Input to the numeric field of DEBIT
and CREDIT must have leading zeroes, or
blanks.
i.e. enter:
$10.10 as 00010.10
$10.01 as 00010.01
$1.10 as 00001.10
$101.10 as 00101.10
When all fields have been filled the
program will respond with:
CORRECT (Y/N)
If ‘N’, the program will return you
to the start of input for that record. If ‘Y’,
the program, will respond by going to the
next record. To return to the menu press
RETURN in response to the DATE field
input.

2. LOAD DATA

This function enables you to load
a complete set of data. The program will
display a menu giving you the choice of
loading from cassette or disk, or of retur-
ning to the main menu should you have
selected this function by mistake.

For either type of load the program
will request an 8 character filename. In the
case of a disk load the program will search

file found on the tape, if this does not
match the filename you supplied the pro-
gram will display the filename read from
tape and abort the function.

After a successful load from either
disk or cassette the program will return
to the LOAD MENU.

3. READ MEMORY

This function scrolls ALL data

stored in memory, up the screen.

4. EDIT MEMORY
This function is used to add new
records, or to change the data stored in
any one record. It uses the same input
and display format as the keyboard input
mode except that it gives several extra
options:
Respond to the prompt SELECT
with one of the following:
This will put you into edit mode. The
input format is the same as the

Keyboard input function EXCEPT that
this time if the RETURN key is press-
ed at the start of an entry field, that
field will remain unchanged and input
will move to the next field.

This will increase the record count by
one and display the next record.

+ This will increase the record count by
ten and display a higher record.

— This will decrease the record count
by one and display the preceding
record.

= This will decrease the record count
by ten and display a lower record.

RETURN in response to the

SELECT * prompt will return you to the

main menu.

5. SAVE DATA

This function enables you to save
a complete set of records. The program
will display a menu giving you the choice
of saving to cassette or disk, or of retur-
ning to the main menu should you have
selected this function by mistake. For
either type of save the program will re-
quest an 8 character filename, write the
file and return to the SAVE MENU. (You
should make a note of the filename you
use, particularly when saving to cassette,
as the program requires the name when
you wish to reload the data).

6. PRINT JOURNALS

This function enables you to print
the four journals to the screen and to a
printer (optional). Follow the instructions
on the screen. Note: Do not attempt to
use the printer option unless there is a
printer connected to the computer. Press-
ing RETURN in response to the DATE
prompt will cause all dates for that jour-
nal to be printed.

IMPORTANT NOTE

Before the Ledger Balances are
calculated and printed, the records in
memory are sorted according to Account
No. This destroys the normal DATE-order
sequence of the record in memory, which
is the preferred order for all other prin-
touts. Make sure that you SAVE a copy
of your data before using this function.

7. LINEPRINTER UTILITY

This function allows direct inter-
face between the keyboard and the
printer, i.e. whatever is typed onto the
screen will be printed as soon as the
RETURN key is pressed. This utility is
useful for setting up headings on reports.
Note: Do not attempt to use this function
unless there is a printer connected to the
computer.

VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983)

MICRO-80

PAGE 17

8. PRINT LEDGER ACCOUNTS

This function allows you to print
the ledger accounts to the screen and to
a printer (optional). Follow the instructions
on the screen. Note: Do not attempt to
use the printer option unless there is a
printer connected to the computer.

USING THE PROGRAM

The program has the capacity to
handle both single entry and double en-
try accounting systems. The benefit of the
double entry system is that it provides a
checking mechanism to indicate accuracy
of input and processing and is the prefer-
red system in maintaining financial records.
However, the double entry system uses
more records in recording the data thereby
reducing the total capacity available for
recording transactions.

For the purposes of this illustration
the double entry system has been used.

Prior to using the program, it is
necessary to establish a Chart of Ac-
counts to accumulate transactions ap-
propriate for the purpose of recording.

system in showing that the total of debits
and credits agree and that there is no im-
balance. If a figure other than $0.00 is

shown as the balance this indicates an er-
ror in processing has occurred and re-
quires investigation and editing).

CASH RECEIPTS JOURNAL

CASH RECEIVED JOURNAL FOR ALL
DATE REF DETAILS
15/707/8% MR. SALARY
31/07/83 MRS. INCOME
©1/08/83 DIV. A CO. LTD.
15/708/83 MR.. SALARY
17/08/83 HEALTH REBATE
27/08/83 BEQUEST NELLY
31/08/83 INT. X CO. LTD.
31/08/83 MRS. INCOME
31/08/83 TOTAL RECEIFPTS
TOTAL

BALANCE $0. 00—

Normally for each receipt an en-

Adequate allowance has been made for
the number of ledger accounts (998) that
may be used. The following example has
been used to illustrate how the program
can be used to record personal income

and expenditure.

CHART OF ACCOUNTS
Balance Sheet of Items

try is required to the Bank Account (debit
entry) and the ledger account to record
the nature of the income (credit entry). In
this example only one entry has been
made to the Bank Account for the total
of the records processed. This has been
done to demonstrate a way in which max-
imum availability of records can be main-
tained. To carry out this function return to
the menu and select the ‘‘Print Journals’

Assets

1. Land

2. Buildings
. Household Furniture & Appliances
. Motor Vehicles

Public Co. Shares
Bank Accounts

NO AW

Liabilities
11. 1st Mortgage
12. 2nd Mortgage

14.
15.
16.

Credit Charge Accounts
Friendly Finance Corp
Other Liabilities

99. Owner’s Equity.

Income and Expenditure Items
Income

51. Husband's Salary

52. Wife's Salary

54. Dividends Received

55. Interest Received

58. Health Refunds

59. Other Income

Expenditures

General

71. Entertainment

72. Household Repairs

73. Housekeeping

74. Insurance

75. Motor Vehicle Costs
76. Subscriptions

77. Interest paid

78. Health Insurance

Taxation Deductions
81. Education
82. Medical Costs
83. Rates & Taxes
84. Trade Subscriptions

To commence processing the tran-
sactions shown in the example the open-
ing balances need to be entered. This is
done via the keyboard input. For this pur-
pose the General Journal (GJ) prefix is
used.

(N.B. The print out of the General
Journal processing demonstrates the self
checking mechanism of the double entry

CASH PAYMENTS

(DATE)’S
ACC NO DEBIT CREDIT
CROS1 0.00 1050.00
CROS2 0.00 600.00
CRO54 0.00 150.00
CROS5S1 0.00 1050.00
CROS8 0.00 10.60
CROS%? 0.00 10000.00
CROSS 0.00 450.00
CROS2 0.00 600.00
CRO10 13910.60 0.00
13910.60 13910.60

function and list the transactions to ob-
tain the total of the input. Once obtained,
return to the ‘“‘Keyboard Input’”’ function
and process this total to the Bank Account
using the ““CR" prefix.

The comments noted above for
Cash Receipts also apply here, except
that the entry to the Bank Account for
cash payments is a credit and entries to
the expense accounts, etc. a debit.

CASH PAYMENTS JOURNAL

JOURNAL FOR ALL (DATE)’S

ACC NO DEBIT CREDIT
CPO75 3.2 0.00
Cro71 75.40 0.00
CPO76 85.00 9.00
CFO73 400.00 0.00
CFo74 230.63 0.00
CFo74 250.00 0.00
CFo11 80.00 0.00
Cro77 718.75 0.00
CrFo12 1600.00 0.00
Cro77 533.00 0.00
CFPO15 1000. 00 0.00
Cro82 10. 60 0.00
CPO15 9600.00 0.00
CFo12 1000.00 0.00
Cro81 100.00 0.00
CFe83 212.10 0.00
CPO73 400.00 .09
Cro10 0.00 14238.72

14238.72 14238.72

LEDGER BALANCES (TRIAL BALANCE)

DATE REF DETAILS
©1/07/83 0001 CAR SERVICE
10/07/83 0002 ENT-BILL MARY
15/07/83 0003 MICRD-80
15/07/83 0004 HOUSEKEEF ING
31/07/83 0005 BUILDING INS.
31/07/83 0005 CONTENTS INS.
31/07/83 0006 A BANK — PRIN.
31/07/83 0006 A BANK — INT.
31/67/83 0007 A SBANE - PRIN.
31/07/83 0007 A SBANE —INT.
31/07/83 0008 FRIENDLY FINAN.
©1/08/83 0009 DR. WHO
01/08/83 @910 FRIENDLY FINAN.
©91/08/83 0011 A SBANK — PRIN.
10/08/83 0012 SCH. FEES — ANN
15/08/83 0013 COUNCIL RATES
15/08/83 0014 HOUSEKEEPING
I1/08/83 TOTAL PAYMENTS
TOTAL
BALANCE $0.00
ACC NO. DEBITS

001 1000¢. 00

002 65000. 00

003 25000. 00

004 19000. 00

006 S5000. 00

007 15000. 00

@10 14135.76

e11 80. 00

012 1100. 00

915 10000. 60

051 0.00

052 0.00

054 ©.00

055 0.00

058 0. 00

CREDITS TOTAL
0.00 10000. 00
0.00 6£5000. 90
0.00 25000. 00
0.00 19000.00
0.00 5000. 00
0.00 15000. 00

14238.72 102.96—

25000. 00 24920. 00—

40000.00 38900.00-

10000.00 0.00

2100.00 2100.00-
1200.00 1200.00-
150.00 150.00-

450.00 450.00-

10. 60 10. 60-

PAGE 18 MICRO-80 VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983)
05e 0.00 10000. 00 10000. 00— SPACE UTILITY DISC BASIC
071 75. 40 0.00 75.40 by D. Bereis
673 800.00 0.00 800.00 This utility will go through a Basic
074 2480. 63 0.00 480.63 program and insert spaces around all of
a7s x. 24 0.00 43.724 the keywords, this not only makes the
. - . L -
074 as. 00 0. 00 85. 00 listing easier to read on a Model 1, but !f
) e e - you have purchased a Model 4 and stil
@77 251.75 ©.00 1251.75 have your Model 1 it wili be essential if
081 100.00 9.00 100.00 you want to convert your old Model 1 pro-
082 10. 60 ©.00 10.60 grams, since the Model 4 WILL NOT run
2e3 212.10 0.00 212.10 a program that does not have spaces bet-
099 0.00 64225.16 64225.16— ween the keywords. Using this utility will
save you hours of typing. To use it simply
TOTAL 167374. 48 167374. 48 0.00 l0ad your Basic program then type:

This facility summarises the
balances of ali active ledger accounts
showing the total debit and credit entries
and the balance of each account. Valida-
tion of the processing is ascertained when
the total debits and credits are the same
amount and the total equals 0.00. If the
total does not equal 0.00 an imbalance
has occurred which requires checking and
correction.

Normally, each of the four journals
would be individually checked prior to per-
forming a trial balance to ensure that each
journal is itself balanced. The trial balance
is then merely a formality and should show
no imbalance.

IMPORTANT NOTE

Before the Ledger Balances are
calculated and printed, the records in
memory are sorted according to Account
No. This destroys the normal DATE-order
sequence of the records in memory,
which is the preferred order for all other
printouts. Make sure that you SAVE a
copy of your data before using this
function.

LEDGER ACCOUNTS

This function enables each in-
dividual account to be printed showing all
the transactions processed to that ac-
count. For the purposes of illustration the
Bank Account (#10) and the Interest Paid
Account (#77) are listed below.

To obtain a complete print out of
ledger accounts it is necessary to input
each account number in response to the
“*Which Account Number do you require’’
question.

In c :ses where the record max-
imum is reached this can be overcome by
obtaining a print out of all journals and
ledger accounts for retention as a perma-
nent record and repeating the procedural
functions outlined above.

This commences by clearing the
memory and inserting the closing
balances for each ledger account via the
General Journal prefix.

The program provides great flex-
ibility as to the types of accounts that may
be incorporated into the chart of accounts.
Your requirements can be specifically
designed for your own particular cir-
cumstances. The design and allocation of
account numbers should be thoughtfully
considered prior to commencement as
any subsequent change in account
numbers for particular purposes will re-
quire the editing of prior transactiuons to
accounts affected.

SALES JOURNAL

The Sales Journal will often not be
applicable in the normal household situa-
tion. It is, of course, useful for a small
business.

Version 4.2 has been modified to
run on the Hitachi Peach.

Version 5.0 has been modified to
run on the TRS-80 Model 4.

Instructions for the Model 4 ver-
sion are the same as those for the Hitachi
Peach, the program has however been fur-

ther modified to make use of the Model
4 features: the description field has been
expanded to 31 characters and the pro-
gram has been broken up into modules to
gain maximum use of the memory. Model
4 owners should type in each module
from the magazine and save it to disk as
an ASCII file using the filename that is
listed in the module, ie:

SAVE “MODULEO/BAS" A

When the program is run,
MODULEO must be the first program that
is loaded and run, this module initializes
the sytem. The program will load the other
modules as required.

Model 4 users should ignore any
references in the main text to cassette I/0,
these functions are not supported by your
machine. Model 4 owners MUST be in the
Model 4 mode to run this program.

BOLD PRINTING ON LINE PRINTER VI

This 1 line subroutine which
enables owners of a Lineprinter VIl to use
bold type. The subroutine may also work
on other Printers, but | have not tried
them.

To use the subroutine, simply
LPRINT your normal text, and when you
want to use bold type, put the tex in P$
and use GOSUB 1000 (or wherever you
put the subroutine). The text must not go
over on to the next line, or an error will
result. On returning from the subroutine,
the Printer’s carriage will be placed just
after the last character of P$. The routine
will work in normal and double size Print
mode, but if both are mixed on one line,
problems will result.

The subroutine works by simply
printing P$ in the same place three times.
The control code 26 executes a carriage
return with no line feed. ZS$ is a string
of blanks, which will return the carriage
to the start of P$ after each carriage
return. ZP is used to check that P$ will
fit on one line and to calculate the length
of ZS$. If you want the bold type darker,
increase the length of the FOR . . . NEXT
loop.

SIRIUS ADVENTURE
for the Colour Computer and
Hitachi Peach

This Adventure was originally writ-
ten to run on the Model 1.

It has mainly been converted to
take advantage of the HI-RES WRITER
published elsewhere in this issue. If you
are typing this program in from the
magazine, follow the instructions for merg-
ing the HI-RES WRITER with this program
and then save it. If you have a cassette
subscription you only to load the program
and the HI-RES WRITER will load into
memory as well.

The adventure is fairly small by
normal standards, though it will still pro-
vide you with a challenge. The Hitachi
Peach version is essentially the same pro-
gram, but without the need for the HI-RES
WRITER. As is usual with Adventures, no
further clues to its operation will be given
here, you'll just have to sweat it out!!!

CMD*S”
Then type:

SPACE and press ENTER/NEWLINE
Then type:

BASIC * and press ENTER/NEWLINE

Then save the program. If you have

a Model 4, all you have to do now is put
the disk in your Model 4 and run the con-
version program on it. Remember you will
still have to check for things like PEEK's
and POKE's before you run it.

YAHTZEE L2/16K
by T. Domigan
YAHT ZEE is based on the popular
poker-like 5-dice game of the same name.

AIM

The aim of the game is to score
in each of 13 categories and the winner
is the player with the highest total score.

ROLLING THE DICE

Each player is allowed 3rolls of the
dice to maximise the score in each of the
13 turns. The first roll changes all 5 dice
whilst the remaining 2 players allow selec-
tive rolling of any of the 5 dice, e.g. if Rolls
1 gives 4, 3, 6, 1, 4, to maximise the
score by rolling more 4's, then “R234"”
woulid be suitable. If a good score results
after the first or second roll then you may
immediately score by entering ‘S’ instead
of “R’. When scoring it is only necessary
to enter the category number e.g. 13.

SCORING

Categories 1-6: Sum of that
category dice in hand.

Category 7: 3 of a kind. Score total of

dice.

84
9: Full house. .. 25 pts

10: Small Straight (sequence of 4 dice)

30 pts

11: Large Straight (sequence of 5 dice)

40 pts

12: YAHTZEE (5 of a kind)score 50 pts
13: CHANCE = anything

score sum of dice

If a second or later YAHTZEE (5
ot a kind) is scored and the appropriate
category 1-6 has been filled, it may be
used in categories 7-11.

Sound is available but memory
need not be protected as the m/l will
reside in the REM statement of line 10.

NOTE: Although written for a
Model 3, this program will run on a Model
1 without modification.

SPACE iNVADERS
for the TRS-80 MC-10

This short Space Invaders game is
included in case any of you have bought
an MC-10 for Christmas, the program is
short and simple, (out of necessity due
to the limited memory). To move your laser
cannon left and right press the ‘A’ or the
S keys respectively, these keys were
chosen because they have the left and
right arrow symbols on them as well.
Press the Space Bar to fire. Ten points are
given for each Invader that is destroyed.
If you shoot all the invaders before they
land you get a bonus of 30 points. If any
Invaders land, you lose.

XX VER 4.2 HOUSEHOLD ACCOUNTING ¥*¥¥%

HITACHI PEACH

19 REM WRITTEN BY
SUNBURST SOFTWARE SERVICES
FOR
MICRO-8¢ PTY LTD
28 CLEAR 16108:SCREENG, , 1:VV=350: POKE&H2
3C,16:POKE164,10
30 DIM A$(351) ,LB(351) tF3S=" HHHHHHH. ##
“IFAS=" SEHH, HEH. HH-" I FS5E=" "+F3%+"

49 W=1:S0%$="PRESS ANY KEY TO CONTINUE %"

:Z9%="TOTAL":Z1$="MEMORY " : Z2%="ACCOUNT":

Z3%="SELECT FUNCTION ¥%":Z4%="JOURNAL":ZS

$="CREDIT":Z6%="DEBIT":Z7%="DATE"

59 GOSUB239:LO0CATE19,18:PRINT"MAXIMUM NU

MBER OF RECORDS = "3VV:LOCATE10,13:PRINT

SO0%;5 : PA=868:LN=1:G0SUB6J: GOT0O259

69 ADE="":WX=INT (PA/64) :WY=PA- (WX*64)

79 FORT=1TOLN

89 GOSUB159: IFIN$=CHR%(13) THEN139ELSEIFI

N%=CHR% (8) THEN119ELSEIFIN$=CHR% (32) THENG

OSUB179

99 AD$=AD%+INE:LOCATE WY,WX:PRINTAD%} :NE

XT:RETURN

199 NEXT:RETURN

119 IFT<=1THENS8GELSET=T-1

129 AD$=LEFT$(AD%,LEN(AD%)-1):LOCATE WY,

WX:PRINTAD®} "%%" 3 : GOTO89

139 IF FL=9 THENBL%$=STRING% (LN-LEN(AD%),

" ") :AD$=ADS+BL%:LOCATE WY,WX :PRINTAD%}

:RETURN

149 BL$=STRINGS (LN-LEN(AD%), "6") : AD$=AD%

+BL$:LOCATE WY,WX :PRINTAD%;:RETURN

159 IN%="":INS=INKEY%:GOSUB169: IFIN$=""T

HEN15S9ELSERETURN

169 LOCATE WY,WX :PRINTAD%3CHR%(134)§ :RE

TURN

179 IFFL=9THENRETURN

189 IN$="g":RETURN

199 T=1

2909 IFT>STHENAD®=" F" :RETURN

219 IFMIDS(AD%,T,1)="@"THENT=T+1:GOT\(.20%

229 AD$=STRINGH(T-1,32) +RIGHTS(AD%,6-V):

RETURN

239 CLS:LOCATEZ,F:PRINT"* % * HOUS

EHOLD ACCOUNTTING VER 4.2
* ¥ #"5:LOCATED, 1:PRINT "% % % (C)

27/97/83 MICRO-89 PTY L

TD * ¥ X3

249 LOCATE1, 3:RETURN

259 P=9:GOSUB239:LOCATE28, 3: PRINT "MENU"
255 LOCATE1,6:PRINT"1 = KEYBOARD INPUT

: S = SAVE DATA":LOCATE1,7:PRIN
T2 = LOAD DATA : 6 = PRI
NT JOURNALS"
269 LOCATE1,8:PRINT*3 = READ MEMORY

: 7 = LINE PRINTER UTILITY":LOC
ATE1,9:PRINT"4 = EDIT MEMORY

: 8 = PRINT LEDGER "§Z2%})°"S"

279 LOCATE®, 13:PRINTZ3%}:PA=848:LN=1:G0S
UB6O
280 AD=VAL (AD$):IFAD<1 OR AD>8 THEN278
299 ON AD GOTO0489,1459,509, 609, 1358, 749,
1150, 1180
390 LOCATE18,3:PRINT"KEYBOARD INPUT"
319 LOCATEZ,S5:PRINTZ7%; " XR/RE/RR"FIL
OCATE®, 6:PRINT"REF NO. *%¥%"j:LOCATE®,7:
PRINT*DETAILS 3SHPSHBOHHHHEE" § 1 LOCATES,
8:PRINT"PREFIX %*%"}§:LOCATE®,9:PRINT"ACC
NO. %%%";:LOCATED, 18:PRINTZ6SS " 3HHL%E.
X"
320 LOCATE®,4:PRINT"RECORD NO. "3§I}
339 LOCATED, 11:PRINTZSS) " %¥H%%. %% :LOC
ATES, 13:PRINT"CORRECT (Y/N) %"} :RETURN
349 GOSUB239:GOSUB3SHS
350 FL=1:PA=328:LN=2:GOSUB&Z:DT$=ADS$: IFD
T$="00" THENRETURN
369 GOSUB37@: GOSUB388:GOSUB399: GOSUBAGS:
GOSUB4198:FL=1:GOSUB429: GOSUB439: GOSUB349
: GOSUB4S8: FL=8: GOT0460
379 PA=331:GOSUB6S:DT$=DTE+ADSE: PA=334: GO
SUB6@: DT$=DT$+AD%: RETURN
389 PA=392:LN=4:FL=98:G0SUB69: RF$=AD$: RET
URN
399 PA=456:LN=15:G0SUB69: DE$=AD%$: RETURN
499 PA=520:LN=2:G0SUB68:PR$=AD%: RETURN
419 PA=584:LN=3:G0SUB6J: PR$=PR$+AD$: RETU
RN
429 PA=647:LN=5:G0OSUB&4S: GOSUB199: DB$=ADS$
+°_":RETURN -
439 PA=653:LN=2:G0OSUB&4S: DBS=DB$+ADS: RETU
RN
449 PA=711:LN=5:GOSUB&S: GOSUB198: CR$=ADS$
+". ":RETURN
459 PA=717:LN=2:GOSUB6S: CR$=CRE+ADS: FL=9
:RETURN
468 PA=846:LN=1:GOSUB&4Z: IFAD$="N"THEN349
ELSEIFAD$<>"Y " THEN469
479 A$(1)=DT$+RF$+DE$+PRE+DB%+CRS:RETURN
489 FORI=WTO VV:GOSUB348:IFDT$="8%" THENW
=1:60T0250
499 NEXTI:GOTO259
S98 GOSUB239: GOSUBS19:GOSUBS59: GOTO250
519 LOCATE25,3:PRINT"CONTENTS OF *jZ1%}

529 LOCATES;4:PRINTZ7%3" REF DETAI
LS ACC NO "3Z6%3 " "325%
539 IF P THEN PRINT#3,Z7%;" REF DE
TAILS ACC NO "3§26%3 " |
Z5%

549 RETURN

559 L=1:FORI=1TOW-1

569 GOSUB1579:G0OSUB1628:PRINTVXS

579 L=L+1:IFL=11THENL=1:LOCATE®Z, 15:PRINT

SO0%3 : PA=986:LN=1:GOSUBAP: GO !3230: GOSUBS

19

589 NEXTI

599 LOCATE®S, 15:PRINT"END OF DATA - "3S0%

3 :PA=1999:LN=1:GOSUB6S: RETURN

699 I=1:FL=9

619 LOCATE28,3:PRINT"EDIT "§Z1%}

629 GOSUB239: GOSUB318:L0CATEZ, 13:PRINT"
"3:LOCATEZ, 15:PRINT"SELECT

*"3

639 LOCATEZ,4:PRINT"RECORD NO. "3I3

649 GOSUB1579

659 IFV1$=""THENGOSUB318:L0OCATEZ, 13:PRIN

T" “3

669 LOCATE8,S5:PRINTVI$E:LOCATEL11,5:PRINT

V2%3 :LOCATE14,5:PRINTV3%; : LOCATES8, 6:PRIN

TV4%3 :LOCATESB, 7: PRINTV3%} : LOCATES,8:PRIN

TV6%5 : LOCATES, 2: PRINTVZ7%3 : LOCATE?, 16: PRI

NTV8%3 : LOCATEZ, 11:PRINTV?%}

679 PA=967:LN=1:GOSUB&AF: IFAD$="3 " THENLOC

ATEDG, 1S5:PRINT"ADVANCE"§:I=I+1:1IF I>VV TH

EN I=VV

689 IF AD%="+"THENLOCATEZ, 15:PRINT"ADVAN

CE®§:I=I+18:1IF I>VV THEN I=VV

699 IF AD$="-"THEN I=I-1:LOCATE@, 15:PRIN

T"REVERSE "3 : IF I<=0 THEN I=1

799 1IF AD%$="="THEN I=1--19:LOCATE®Z,15:PRI

NT"REVERSE "3 : IF I<=6 THEN I=1

719 IFAD%$=" "THEN259

728 IF AD$="E"THENLOCATE®, 15:PRINT "% EDI

T %"3:G0SUB849:GOTO0629

739 GOTO639

749 GOSUB239:LO0CATE18,3:PRINTZ4%;°S AVAI

LABLE"®

745 LOCATEZ,S:PRINT"1 = PRINT LEDGER BAL

ANCES : 4 = GJ GENERAL "32Z4%3:L0C

ATEB ,;6°"PRINT"2 = CP CASH PAYMENTS "§2Z4%§

- : 9 = SJ SALES "3Z4%3:LOCATEZ,7:PR

INT*"3 = CR CASH RECEIVED "§2Z4%3" : 6

= RETURN TO MAIN MENU"

759 LOCATE®S, 13:PRINTZ3%j:PA=848:LN=1:G0S

UB&G: AD=VAL (AD%)

769 IFAD<1 OR AD>6 THEN?739

779 ON AD GOTO 1639,789,799,800,819,259

780 PT$="CASH PAYMENTS" :KA%="CP":GOTO082¢&

799 PT$="CASH RECEIVED°:KA%="CR":GOTO0829

809 PT$="GENERAL":KA%$="GJ":G0T0829

819 PT$="SALES" :KA%$="SJ"

829 GOSUB989:G0SUB1919:G0T01939

839 PRINTSO%:~A=1022:LN=1:G0SUB&69: GOTO25

[

849 FL=1:PA=328:LN=2:GOSUB&AF: IFADS="GF" T

HENDT$=V1$+V2%+V3%: LOCATE3, S: PRINTV1%3 "/

"3V2%3 °/"3V3%; : GOTOBLID

859 DT$=AD%: GOSUB379

869 GOSUB389: IFRF&=" ° THENRF$=V4%: L0OC

ATE8, 6: PRINTRF %3

(€861 Y3AWID3A/H3GWIAON) ¥ ON ¥ JWNITOA

O8-OHIIW

6l 39vd

870 GOSUB399: IFDE®=" *THEN
DE$=\/5%:LOCATES, 7 : PRINTDE®}

889 GOSUB49S:IFPR$=" "THENP1$=V&%:LOCAT
€8, 8:PRINTV6SS : GOTO999

899 P1$=AD$

990 GOSUB419:IFAD$=" "THENPRS$=P1$+VU7%:
LOCATESB, 9:PRINTVU7%} : GOTO920

916 PR$=P1%+AD$

920 FL=8:GOSUB4206: IFADS=" * THENDB$=V
8%:LOCATE?, 18: PRINTVBS : GOTO948

938 GOSUB198:GOSUBA39

949 FL=0:GOSUB449: IFADS=" ° THENCR$=V
9%:LOCATE7, 11: PRINTV9%} : GOTO968

958 GOSUB198:GOSUBASH

968 GOSUB479

978 FL=8:RETURN

980 LOCATE®, 13:PRINT"IS THE PRINTER REQU
IRED (Y/N) %°3:PA=862:LN=1:G0OSUB&D

998 IF AD$<>"N" AND AD$<>"Y"THENYSS

1988 P=(AD$="Y"):IF P THEN OPEN"0",#3,"L
PTB: "

1685 RETURN

1918 ZK$="":LOCATE®, 14: PRINT"WHICH "}27%
3" DO YOU REQUIRE ¥%/%%/%%"j:FL=1:PA=922
:LN=2: GOSUB6@: E$=AD%:: IFE$="08°THENE$=""S
":ZK$="ALL *:GOTO1839

1929 PA=925:GOSUB&D: ES=E$+ADS: PA=928: GOS
UB66: ES=E$+ADS: RETURN

1938 GOSUB238:LOCATES,3:PRINTPTS§" *;24%
3 FOR "3ZK®$3"("3Z7%3")"jE$:IF P THEN PR
INTH3," ":PRINTH3,PT$3" "3Z4%3" FOR "3ZK
3" ("52Z7%1 ") "3ES

1948 DTH=@:CTH=0: BL#=0: GOSUB520

1959 FORI=1TOW

1968 IFMID$(A%(I),26,2) < >KASTHEN1118
1878 IFE$="'S"THEN1899

1980 IFE$OLEFT$(AS(1},6) THEN1119

1999 GOSUB1578:GOSUB1628:PRINTUX®:IF P T
HEN PRINTH3,UX$

1166 DR#=VAL (MID$(A$(I),31,8)) :CRH=VAL(M
ID$(AS(I),39,8)) : DTH=DTH+DR#: CTH=CTH+CR#H
: BL#=BL#+DR#-CR#

1118 NEXT

1120 PRINT:PRINTZ9%; TAB(36)§ : PRINTUSINGF
36;DTH3CTH:PRINT"BALANCE *3:PRINTUSINGF4
$5BLY

1136 IF P THEN PRINT#3," * :PRINTH3,Z0%}
TAB(36) 3 :PRINTH3,USINGF3$3 DTHCT#:PRINTH
3, "BALANCE "3 :PRINT#3,USINGFA4%§BL#: CLOSE
"3

1149 LOCATE®, 15:PRINT"PRINTOUT COMPLETE
- *350%; :PA=10896:LN=1:GOSUB69: GOT0O749
1158 GOSUB238:AD$="Y":GOSUB1988:LOCATES,
3:PRINT"LINEPRINTER UTILITY®:LOCATE®,S:P
RINT*TYPE HEADINGS OR NOTES AS RERUIRED®
:LOCATE®, 6:PRINT"TYPE *3CHRS$(34)3 "EXIT"}
CHR$(34); " TO RETURN TO MAIN MENU*®

1168 M$="":INPUTMS$: IFM$="EXIT"THEN CLOSE
#3: GOTO259

1178 PRINTM®:PRINTH3, M$:GOTO1169

1189 GOSUB2398:LOCATE18,2:PRINT°LEDGER "}
22%;5°"S":LOCATEZ,S:PRINT"TYPE "§CHR$(34)}
"999=; CHR$(34) ;= TO EXIT"

1199 GOSUB989

12900 LOCATES, 15:PRINT"WHICH *§2Z2%3" NO.
DO YOU REQUIRE ¥¥%"j:PA=993:LN=3:FL=1:G0
SUB&G: N=VAL (ADS)

1218 IFN<10RN>999THEN1299

12:5 BLH=8:DTH=0:CTH=0: IFN=999THENCLOSE#
3:60T0259

1239 GOSUB248:LOCATES,3:PRINTZ2%;" NO. *
$ADSI:IF P THEN PRINTH#3," ":PRINTH#3,Z2%3§
* NO. "3jADS$

1248 LOCATES, 6:GOSUBS28:FORI=1TOW

1258 IFN<>VAL (MID$(A%(I),28,3)) THEN1289
1269 GOSUB1S579:GOSUB1620:PRINTUX$:IF P T
HEN PRINTH3,UX$

1279 DRH=VAL (MID%(A$(I),31,8)):CRH=VAL (M
IDS(AS(I),39,8)) :DTH=DTH+DRH: CTH=CTH+CR#
: BLH=BL#+DRH#-CR#

1280 NEXT

1299 PRINT:PRINTZS%$;TAB(36)} :PRINTUSINGF
3E;DTHICTH

1399 IF P THEN PRINT#3," ":PRINTH3,Z8%;T
AB(36) § :PRINTH3, USINGF3$;DTH#; CT#

1319 PRINTZ2%3" BALANCE®}§ :PRINTUSINGF4%}
BL#

1329 IF P THEN PRINT#3,Z2%3" BALANCE"}:P
RINTH#3, USINGFA%; BL#

1339 PRINT:PRINT:IF P THEN PRINTH3,® ":P
RINTH3,= *

1349 GOTO1200

1358 X1$="SAVE TO°:GOSUB1588

1368 GOSUB1593

1379 IF SF=3THEN2590

1389 GOSUB16988

1399 GOSUB1618:IF AD$="E*" THEN GOTO01350
1499 IF SF=1 THEN N1$=RIGHT$(NM$,8):0PEN
*0",#2, "CASO:DATA" :PRINTHZ,N1%,W

1416 IF SF=2 THEN OPEN"0",1,NM$

1420 IF SF=1 THEN FOR I=1 TO W STEP4:PRI
NTH2,A$ (1) ,AS(I+1),AS(I+2),AS(I1+3) :NEXT:
CLOSE#2

1439 IF SF=2 THEN PRINT#1,W:FOR I=1 TO W
:PRINTH1,A%(I):NEXT:CLOSE

1449 GOTO1359

1459 X1$="LOAD FROM":GOSUB1580

1469 GOSUB1599

1479 IF SF=3THEN259

1489 GOSUB1699

1499 GOSUB1619:1IF AD$="E“ THEN GOT01458
1589 IF SF=1 THEN N2%$=RIGHT$(NM$,8):0PEN
"I",#2,"CASG:DATA": INPUTHZ,N1%,W: IFN1$<>
N2$THENGOTO01559

1519 IFSF=2THENOPEN"I", 1, NM$

1528 IF SF=1 THEN FOR I=1 TO W STEP4:INP
UTHZ2,AS(I),AS(I+1) ,AS(1+2), A (1+3) :NEXTI
: CLOSE#2

1538 IF SF=2 THEN INPUTH#1,W:FOR I=1 TO W
: INPUT#1, A% (1) :NEXT:CLOSE

1549 GCT01450

1559 LOCATES, 13:PRINT"THIS IS FILE "jNi%
$* NOT FILE "jN2%;:CLOSE#2

15608 LOCATE®, 14:PRINT"PRESS ANY KEY TO A

BORT *"3 :PA=919:LN=1:GOSUB&9: GOT0O1456
15706 VI1$=LEFT$(AS(I), 2} 1 ¥2T=rMIDS(AS(I),3
,2) tU3S=MIDE(AE(1),5,2) :V4AE=MIDS(AE(I) 7
,4) 1VUSE=MIDE(AS(I),11,15) :V6E=MIDE(AS(I)
»26,2) :V7%=MID$(AE (1), 28, 3) : VBE=MIDE (AS(
1),31,8) :V94=MID$(A%(I),39,8) :RETURN
15898 GOSUB238:LOCATEZ23,3:PRINT"DATA "jLE

FTH(X1%,4) :LOCATEY,S5:PRINT"1 = "jX1%3" T
APE":LOCATEZ,7:PRINT"2 = "jX1%3;" DISK":L
OCATE®,9:PRINT"3 = EXIT TO MENU®":RETURN
1599 LOCATE®, 13:PRINTZ3%}:PA=848:1_N=1:GO
SUB6@:SF=VAL (AD%) : IF SF<1 OR SF>3THEN159

PELSERETURN

16869 FL=0:GOSUB239:L0OCATEZ, 7: PRINT"ENTER
FILENAME #BHBHHHE" 1 1 PA=463: LN=8: GOSUBSH
*NM$="1:"+AD%: RETURN

1619 LOCATE®,B8:PRINT"PRESS ANY KEY WHEN
DEVICE READY OR (E)SCAPE %*"§:PA=558:LN
=1:GOSUB&6S: RETURN

1620 UXE=V1S+" /" +VU2%+" /" +U3E+" "+UqE+"
"+USE+" "THULEHUTE+" " +UBS$+” = +U9%:
RETURN

1639 GOSUB238: GOSUBY86: GOSUB239: GOSUB178
G:LOCATELIS,7:PRINT"% ¥ ¥ WA I T % % %
":FOR I=1 TO W-1:GOSUB1578:LB(I)=VAL(RIG
HT$(V7%,3)) :NEXTI: J=0: DTH=0:CTH=0: BL#=0
1649 GOSUB238:PRINT:PRINT-ACC NO."jTAB(1
6)326%;"S"3TAB(34) ;25%3 "S"§ TAB(S55) § Z0%
1658 IF P THEN PRINT#3," ":PRINT#3,"ACC
NO. "3 TAB(16) §26%3; "S"3 TAB(34) §25%3 "S"§ TAB
(55) ; ZO$

1660 TTH=G:DR#=0:CRH#=0:J=J+1

1676 VF=LB(J):FORI=1TOW:IFLB(I)=VF AND L
B(I)<>3THENGOSUB1770

1688 NEXTI:LB(J)=8:IFJ=WTHEN1748ELSE1690
1699 IFVF=8THEN1660

17860 TTH=DRH-CRH:DTH=DTH{DRH:CTH=CTH+CR#
tBLH=BLH#+TTH

1716 PRINT® *jMID$(A%(J),28,3)3:PRINTUS
INGFSEIDRHSCRHI TTH

1720 IF P THEN PRINT#3," “j;MID®(A%(J),2
8,3)3 :PRINTH3,USINGFSE§ DR#"CR#3 TTH

1738 GOTO1668

1749 PRINT:PRINTZS%3:PRINTUSINGFS®;DT#;C
TH;BL#

1756 IF P THEN PRINT#3,:PRINTH#3,20%} PRI
NTH#3,USINGFS$;DTH; CTH BLH: CLOSE#H3

17606 LOCATES, 15:PRINTSOS$} : PA=986:LN=1: GO
SUB6G: GOTO259

1779 GOSUB1570:DR#=DRH#+VAL (VB%) : CRH=CR#+
VAL (V9%) : LB (I)=06:RETURN

1786 LOCATE1S5,7:PRINT"% % % SORTING *
% %":FOR SC=1 TO W-1:FOR SA=1 TO W-1
1796 SA$=MID$ (A% (SA),28,3)

1800 SB$=MID$ (A% (SA+1),28,3):IF SB$=""Th
ENGOTO1818ELSE IF SA$>SB% THEN SBH=A%(SA
):AE(SA) =A% (SA+1) 1A% (SA+1)=SB%

1818 NEXTSA:NEXTSC:RETURN

0¢ 29vd

O08-OHIIW

(€861 HIEW3D3Q/Y3I8NIAON) ¥ ON ¥ INNTOA

¥¥¥¥% SIRIUS ADVENTURE #6%

HITACHI PEACH

18 REM SIRIUS ADVENTURE

26 REM (C) MAY 1983 MLADEN BAUK.

3¢ PEM

a3 REM MODIFIED FOR THE HITACHI PEACH
BY -- MICRO-88

69 CLS:SCREENG, ,0

79 LOCATEZ,4:PRINT®" S I R I U S ":LOCAT
E7,S5:PRINT" ADVENTURE" :FOR X=1T02000:N

EXT:CLS

89 CLEAR 299: VB=22: ND=26: L=21: O0B=6:

LN=337

99 CLS: LOCATE1S,3:PRINT"Sirius Adventur

e": FM$=">": PF®=" *

198 LOCATE?,S:PRINT"Press: <I> nstructi

ons or"
119 LOCATE17,6:PRINT"<B)> egin.": CL%$=

128 DIM A%(VB), B%(ND), L%(L), B(OB):
SUB 1439

136 As= INKEY$: IF A%$="" THEN 139
149 IF A%="1" THEN 1729

15@ IF A%< >"B" THEN 139

163 CLS

173 1F LO=0L THEN 279

GO

189 OL=LO:CLS: LOCATE15,3:PRINT"Sirius A

dventure®

198 IF LO>4 AND B(1)< > -1 THEN PRINT: P
RINT" It's too dark to see!": GOTO 2
79

200 PRINT"I am ...":PRINTL$(LO)
219 LINE (9, 199)- (656, 199) ,PSET

229 TR=@: LOCATE?7,20:PRINTCL%;: LOCATE?Z,

20:PRINT“Visible objects >>> "j;

226G FOR T=1 TO OR

249 IF B(I)=L0O THEN PRINTB%(I);". "3
R= -1

258 NEXT 1

2608 IF TR< > -1 THEN LOCATE27,28:PRINT"N

one.";

2798 LOCATE®, 15:PRINT"What should I do?";

CL$;: CH="":G0SUB 1999: PRINT: PRINT

280 (F C%="" THEN PRINT"Huh?": GOTO 279

29 FOR I=1 TO LEN(C$): IF ASC(MIDS$(

, 1, 1))=32 THEN 310

33@ NEXT I: GOTO 328

1@ LES= LEFT$(C$, I-1): RI$= MIDS(
I+1, LEN(CS)- LEN(LES$)-1):GOTO 339

320 LE®= LEFT$(CSE, I): RIS=""

Cs

cs,

330 L= LEN(LE%): IF RI%$="" THEN R= -1 EL
SE R= LEN(RI%)

349 FOR I=1 TO VB: IF L> LEN(A%(I)) THEN
369

359 IF LE®< > LEFT$(A%(I),L) THEN 369 EL
SE 389

360 NEXT I

379 IF C%< >"" THEN PRINT"I don’t unders
tand "CHR%(34);C%$;CHR%(34)", check my vo
cabulary.®": GOTO 279

389 IF R= -1 THEN 429

396 FOR J=1 TO ND

499 IF RI%< >B%(J) THEN NEXT J ELSE 429
419 PRINT"I don’t understand "CHR%(34);R
I$5CHR%(34)", check my vocabulary.": GOT
0 279

428 ON I GOSUB 459,459,450,459,839,889,8
89, 889, 959, 959, 959, 959,989, 1959 ,980, 1239
;980,1120,1160,1299,1360,2019

439 IF 1>4 AND I<13 THEN 219

449 1IF I=22 THEN 189 ELSE 179

459 1IF J<OB+1 THEN PRINT"I can’'t "CHR$(3
4)5A%(I)+" ";RIS}CHR®(34)"!'": GOTO 279
469 J=J-0B: ON J GOTO 559,649,7198,759,55

9,649,719,759,479,499,519,539,479,499,51

9,539,799,8190,799,819

479 IF L0O=13 THEN LO=11 ELSE GOSUB 1869
480 RETURN

499 IF LO=12 THEN LO=11 ELSE IF LO=14 TH
EN LO=15 ELSE GOSUB 1869

599 RETURN

519 IF LO=11 THEN LO=12 ELSE IF LO=15 TH
EN LO=14 ELSE GOSUB 1869

520 RETURN

539 IF LO=11 THEN LO=13 ELSE GOSUB 1869
549 RETURN

556 IF LO=2 THEN LO=1 ELSE IF LO=S5 THEN
LO=4 ELSE IF LO=6 THEN LO=S

569 1IF LO=7 THEN LO=9? ELSE IF LO=11 THEN
LO=?

579 IF LO=16 AND B(4)= -1 THEN GOSUB 187
]

589 IF LO=16 AND B(4)< > -1 THEN LO=17

598 IF LO=18 AND B(S)= -1 THEN LO=19
699 IF LO=18 AND B(S5)< > -1 THEN GOSUB 1
879

619 IF LO=15 THEN LO=16

629 1IF LO=0L THEN GOSUB 1869

633 RETURN

649 1IF LO=1 THEN LO=2 ELSE IF LO=4 THEN
LO=5 ELSE IF LO=5 THEN LO=6

659 IF LO=9 THEN LO=7 ELSE IF LO=7 THEN
LO=11 ELSE IF LO=16 THEN LO=15

669 IF LO=17 THEN LO=16

679 IF LO=19 AND B(S)= -1 THEN LO=18
689 1IF LO=1%9 AND B(S)< > -1 THEN GOSUB 1
870

699 IF LO=0L THEN GOSUB 1869

799 RETURN

719 IF LO=3 THEN LO=2 ELSE IF LO=4 THEN
LO=3 ELSE IF LO=18 THEN LO=7

729 IF LO=7 THEN LO=8 ELSE IF LO=19 THEN
LO=296 ELSE IF LO=26 THEN LO0=21

739 IF LO=0L THEN GOSUB 1869

749 RETURN

759 1IF LO=2 THEN LO=3 ELSE IF LO=3 THEN
LO=4 ELSE IF LO=7 THEN LO=19

769 1F LO=8 THEN LO=7 ELSE IF LO=298 T.T
LO=19 ELSE IF LO=21 THEN L0=29

778 IF LO=0L THEN GOSUB 186%

788 RETURN

799 IF LO=7 THEN LO=6 ELSE IF LO=i8 THEN
LO=17 ELSE GOSUB 1869

899 RETURN

819 IF LO=6 THEN LO=7 ELSE IF LO=17 THEN
LO=18 ELSE GOSUB 1869

829 RETURN

839 IF J=@ THEN J=3

849 IF J< >2 THEN PRINT®"I can’t eat that
, stupid.”: RETURN

859 IF J=2 AND B(J)=6 THEN PRINT"I alrea
dy ate it.":RETURN

869 IF J=2 THEN PRINT"Munch, chomp, <BUR
P> - the creambun was delicious!": B(2)=

#: RETURN

879 PRINT"ERROR"®": STOP

880 IF J>0B THEN PRINT"I can’'t ®"CHR%(34)
5CHE;CHRE(34)".": RETURN

899 IF B(J)= -1 THEN PRINT"I already hav

e it!": RETURN

999 IF B(J)< >LO THEN PRINT"I can’'t see
the ";B%(J); " here.":RETURN

919 IT=1: FOR I9=1 TO OB: IF B(I9)= -1 T
HEN IT=IT+1

920 NEXT I9:IF IT>3 THEN PRINT"I am carr
ying too much, check inventory.";:RETURN

939 PRINT"0Ok. I add a "B%(J)" to my inve
ntory."

949 B(J)= -1: RETURN

959 IF J>0B THEN PRINT®"I can’t "CHR$(34)
5CHE;CHRE(34)".": RETURN

969 IF B(J)< > -1 THEN PRINT"I don’t hav

e a "RI%: RETURN

979 B(J)=LO: PRINT"Ok": RETURN

989 IF J>0B THEN PRINT"I don’t see anyth
ing special.”": RETURN

998 IF B(J)< > -1 THEN PRINT"I am not ca
rrying a "B%(J): RETURN

1969 ON J GOTO 1919, 1929,1939,1039, 1939,
19490

1919 PRINT"It burns brightly.": RETURN
1929 PRINT "It looks tasty!": RETURN

1939 PRINT"Magic seems to emanate from t
he “"R%(J): RETURN

1948 PRINT"Its beautiful!": RETURN

1959 IF J>0B THEN PRINT"You are being si
11y.": RETURN

1969 1IF B(J)< > -1 THEN PRINT"I don’t ha

ve the "B%(J)".": RETURN

1976 1IF J< >3 THEN PRINT"Waving the "B&(

J):PRINT" is not very rewarding.®: RETUR

N

(€86} Y38IN3O3A/H3IAW3IAON) ¥ ON v IWNTOA

O2-CHOIINW

1 39vd

1983 PRIMT"The room dims and blurs, and.

"
e ¥

16°9 FOR I=1 TO 10€@: NEXT I

1166 IF L0O=13 THEN LO=14 ELSE IF LO=14 T
HEN LO=13 ELSE PRINT"nothing happens.”:
RETURN

1116 PRINT"I am magically transported!":

FOR I=1 TO 1988: NEXT I: RETURN

1126 PRINT"Confirm <(Y/N> 2"5: C%="": LO
CATE?7,3:PRINTN,CL%: GOSUB 1999

113@ IF C%="Y" THEN A=USR1(9):CLS: END
1140 IF C%< >"N" THEN 1129

1150 PRINT:PRINT:PRINT"Confirm <CANCELL
ED>": RETURN

1160 IN=@: FOR 19=4 TO 6

11706 IF B(I9)=1 THEN IN=IN+20

1180 NEXT 19

1198 IF IN=68 THEN PRINT"Fantastic!

you have solved the adventure!"”

1266 PRINT"You have"IN"points out of a p
ossible 69."
1210 IF IN=69 THEN A=USR1 (@) :CLS: END
12239 RETURN
1238 PRINT"I am carrying >>> "j
1249 IN=@: FOR 19=1 TO OB
1259 IF B{I9)= -1 THEN PRINT"A "B%(I9);"
. "5: IN= -1
1269 NEXT 19
127@ IF INC > -1 THEN PRINT"Nothing at a
11.": RETURN
1280 RETURN
1299 PRINT"Ready tape...press <ENTER>"
1399 IN$= INKEY®:IFIN$=""THEN1399
1319 OPEN "0",#1,"CASZ:URLORD"
1320 FOR I9=1 TO OB: PRINT#1,B(I9);: NEX
1 19
1336 PRINT#1,LO0
1340 CLOSE #1
1356 RETURN
1363 PRINT"Ready tape...press <ENTER>"
1370 IN$= INKEY%:IFIN%=""THEN1379
1386 OPEN "I",#1, "CASO:URLORD"
1399 FOR I9=1 TO OB: INPUT#1,B(I%?): NEXT
19
1490 INPUTH1,LO
1419 CIL.OSE #1
142G RETLIRN
143@ 1.0=!
149¢ FAOR I=1 TO VB: READ A%(I): NEXT I
1459 FOR I=1 TO ND: READ B%(I): NEXT I
14680 DATA GO,WALK,RUN,CRAWL,EAT,GET, TAKE
; GRAB, DROP, THROW, PUT, LEAVE, LOOK, WAVE, EXA
MINE, INVENTORY, INSPECT,QUIT,SCORE, SAVE, L
OAD, VOCABULARY
147¢ DATA LAMP, BUN,ROD,RING,STATUE, CROWN
,N,S,W,E,NORTH, SOUTH, WEST, EAST, NW, NE, SW,
SE,NORTHWEST, NORTHEAST , SOUTHWEST, SOUTHEA
ST,UP,DOWN,U,D
1489 DATA 1,6,9,8,12,21

1499 FOR I=1 TO OB: READ B(I): NEXT I
1569 FOR I=1 TO L: READ L%(I): NEXT I: R
ETURN

1519 DATA "at a plateau near a cliff. A
rocky path leads south. Some obvious ex
its: South."

1526 DATA "on a rocky path leading north
and curving to the east. Some obv
ious exits: North. East."

1539 DATA "at the entrance to a dark cav
e. A rocky path to the west curves north
. There is a slight breeze.Some obvious

exits: West. East."
1549 DATA "just inside a dark cave. Ligh
t comes from an entrance to the west.

There is adank,mouldy smell. A tunnel 1
eads south.Some obvious exits: West. Sou

th. "
1559 DATA "in a low north/south tunnel.
Some obvious exits: North. South®”

1560 DATA "in an oval cavern. There is a
forbiddingstone staircase here. Some ob

vious exits: North. Down."
1579 DATA "in a high, square cave with w
alls o¥f frozen ice. There are passage

s in many directions. Some obvious exit

s: North. South. West. East. Up."

1580 DATA "in a triangular side-chamber.
Some obvious exits: East.”

1599 DATA "in a musty-smelling alcove. §

ome obviousexits: South.*®

1609 DATA "in an eerie chamber - small s

quealing sounds come from the walls. S
ome obviousexits: West."

1619 DATA "in an enormous cave. There is
a double pillar of green stone down th

e centre. Some obvious exits: North. So
uthwest. Southeast. "

1626 DATA "in a malodourous tunnel. Some
obvious exits: Northeast."®

1639 DATA "in a room in which the only V
ISIBLE exitis the way I came in. Some ob
vious exits: Northwest"

1649 DATA "in a secret room,reached only
by magicalmeans. Some obvious exits: No
rtheast. "

1659 DATA "in a octagonal room. Some obv
ious exits:North. Southwest."

1669 DATA "in an enormous misty cavern.

Mist obscures the ceiling. Some ob
vious exits: North. South.*®

1679 DATA "in a tiny box-shaped room. Do
or leads south and stairs lead down. S

ome obviousexits: South. Down."

1689 DATA "in a strange room. There’'s a
faint whiffof chlorine. Some obvious exi
ts: North. Up."

1699 DATA "in a steamy chamber, with war
m walls. Some obvious exits: West.Sout
h."

1766 DATA "in a large room, littered wit
h alabasterslabs. Some obvious exits: We
st. East. "
1719 DATA "in the throne rocm of the evi
1 Urlord! A low door leads east. Some o
bvious exits: East.”
1720 CLS:LOCATEZ,3:PRINT"";:PRINT"Your q
west is to explore the cave of the";
1738 PRINT"evil Urlord, and bring back t
o the edge of the ciiff the following va
luables:*®
1749 PRINT"1. The white gold ring."
1750 PRINT"2. The sacred silver statue.”
1769 PRINT"3. The jewelled crown of the
Urlord.";
1770 PRINT:PRINT
1780 PRINT"Be careful...":PRINT:PRINT:PR
INT
1799 PRINT"Preass <C> ontinue."
1809 FOR 1I=1 TO 49990
1819 A%= INKEY%: IF A%="" THEN 1849
1826 IF A%< >"C" THEN 1819
1839 GOTO 179
1849 NEXT 1
1856 GOTO 179
1860 PRINT"You cannot go in that directi
on.": RETURN
1879 PRINT"An invisible force prevents y
ou from passing.”
1880 FOR I=1 TO 1696: NEXT 1
1899 RETURN
1900 LOCATE18,15:PRINTCS;PME; " "3
19196 A%= INKEY%: IF A$="" THEN 19196
1920 LOCATEL18,15:PRINT,PF$%;: A=ASC(A%)
1930 IF A>31 THEN 1999
1948 IF A=8 AND LEN(C%) >3 THEN C%= LEFT®
(CHE,LEN(C%)-1): LOCATE18,15:PRINTCL%;:LO
CATE18,15 :PRINTC%;: GOTO 1999 ELSE IF A
=8 THEN 19996
1959 IF A=13 THEN GOSUB2846:FOR X=15 TO
23:LOCATEG ,X:PRINT"

" :NEXT:LOCATEZ,15:RETU
RN
19690 IF A=16 THEN A$= CHR$%(92) ELSE IF A
=27 THEN As="@"
1978 IF A=9 THEN A%= CHR%(187) ELSE IF A
=31 THEN A%="%"
1980 IF A=24 THEN C%="": LOCATE18,15:PRI
NTCL%3;: GOTO 1999
1999 C$=C$+A%: IF LEN(CS)>20 THEN RETURN
2009 LOCATE18,15:PRINTCS;: GOTO 1999
2019 CLS:LOCATEL1S,3:PRINTA%(22):LOCATE?Z,
4:PRINT;
2026 FOR 1I9=1 TO VB: PRINT A%(I9),: NEXT

19

2030 A%$= INKEY%:IF A%$="" THEN 26396 ELSE
RETURN
2049 X=(PEEK(39)¥256+PEEK(49)) - (PEEK(33)
*#256+PEEK(34)) :RETURN

¢¢ 39vd

08-OHIIN

(€861 YIBWID3IQ/YIBWIAON) ¥ ON ¥ INNTOA

*¥%¥¥ KILLER SATELLITE 336k

COLOUR COMPUTER

16 REM THE KILLER SATELLITE

23 REM VERSION 1.1

39 REM 15/8/83

46 REM ¥¥ BY N.S.EDWARDS ¥*%

S REM INITIAL DISPLAY

49 CLSGB:FOR T=1 TO 15:SET(RND(64
)-1,RND(32)-1,5) :NEXT:PRINTR262,
"the"CHR$(128) "killer"CHR$(128) "
satellite";

79 PRINT@349,CHR$(249); :PRINT@3?
3,CHR$(175)3; :PRINTR494,CHR% (246)

y

8@ REM SET UP STRINGS

96 FOR T=1 TO S5:SH$=SH%+CHRS$ (183

) +CHR® (187) +CHR® (128) : NEXT

199 FOR T=1 TO 7:B%=B%+CHR$(143+

16%T) s NEXT

116 PRINTE365, B%;

126 FOR T=1 TO 8:PLAY"01L20CP18"

INEXT

13@ CLS:PRINT"A SATELLITE ORBITI

NG FAR ABOVE THE EARTH HAS MALF

UNCTIONED. IT HAS BEGUN SENDI

NG DANGEROUS COSMIC";

135S PRINT" RAYS TOWARDS THE EART

H. YOU MUST PROTECT THE EARTH
FROM THE COSMIC RAYS BY MATC

HINGTHE COLOURS OF THE APPROACHI

NG RAYS";

146 PRINT” WITH YOUR SHIELD UNTI

L THE SATELLITE RUNS OUT OF POWE

R (11 ROUNDS).":PRINT:PRINT"TO D

0 THIS USE THE <SPACE BAR> .":PR

INT" BE WARNED THE RAYS TRAVEL

AT EVER INCREASING SPEEDS. "

1S@ PRINT@484, "PRESS (ENTER> TO

BEGIN";

148 T=-1

176 IF INKEY$="" THEN IF T THENP
LAY"01L19GP8* :SCREENS,1 ELSE PLA
Y*01L18CP8":SCREENG,8 ELSE 199
189 T=NOT(T):GOTO 179

199 REM INITIALIZE VARIABLES

203 CLSP:X=278:5=118:SH=3:E=1:S1
=@:M=0:R=0

216 GOTOS@9

223 REM CONTROL LOOP

230 GOSUB 439

249 REM FIND COLOUR MATCH

253 F=9

260 F=INSTR(F+1,Q%,D%):IF F=8 TH
EN 299

270 MIDS(A%,F)=MID% (A%,F+1)

280 X=X+1:M=M+10:E=E-1

299 Q$=MID% (A%, 1,E)

399 REM UPDATE DISPLAY

316 PRINT@X,Q%; :PRINTR463, M;

3206 PLAY"L2001C"

336 REM CHECK FOR WIN

340 IF LEFT$ (A%, 1)=CHR$(128) THE
N M=M+190%R:GOTO S09

359 GOSUB 439

360 REM CHECK FOR LOSS

370 X=X-1:E=E+1:IF X=<259 THEN M
=M-409: GOSUB5806: GOTOS99

380 GOSUB 430

399 GOTO239

490 REM END CONTROL LOOP

419 REM

423 REM CHANGE SHIP COLOUR

439 FOR V=1 TO G

449 IF PEEK(345)=247 THEN C=C+1:
IF C>7 THEN C=1

450 D$=CHR%(143+16%C) :PRINT@258,
DE;

468 FOR I=1 TO SV:NEXT

479 NEXT V

489 RETURN

498 REM NEXT LEVEL

560 R=R+1:51=S1+1:1IF R>11 THEN 7
260 ELSE CLS®:FOR Z=1 TO 18:X1=RN
D(64)-1:Y1=RND(32)-1:SET(X1,Y1,5
) :NEXT

513 IF S1>=5 THEN S1=2:SH=SH+1:1
F SH>S THEN SH=S

529 PRINTR244,CHR%(249) ; :PRINT@2
77,CHR%(175) ; :PRINT@398, CHR% (246
)3

539 PRINT@457, "SCORE ";M; :PRINTE@
11, "ROUND "j3Rj3:X=275:E=1:5=S-19:
A%$="": FOR T=1 TO 49:A%=A%+CHRS(
RND(7)%¥16+143) : NEXT: A$=A%+STRING

$(20,128)

549 IF R<S THEN PRINT@489,B%;: 6=
2:8V=S/2-5 ELSE G=1:SV=S

556 REM PRINT SHIPS LEFT

569 PRINTRA96+ (5-SH) *3,LEFTH (SH$
s 3%¥SH) 5 :GOTO 239

5786 REM SHIP DESTROYED

580 FOR Z=1 TO 19:PRINT@258,CHRS$
(RND(7)%16+RND (14)+128) 3 :SOUND12

G-Z%19,1:FOR ZZ=1 TO S@:NEXT:NEX
T:SH=SH-1:S=S+19:R=R-1:S1=S1-1
599 IF SH<1 THEN 619 ELSE RETURN

699 REM YOU LOST

619 CLSO:PRINTR96,"all“"CHR%(128)
"your®"CHR%(128) "ships*"CHR$%(128) *
were“"CHR$(128) "destroyed®; :PRINT
@128, "before"CHR%(128) "the"CHR%$ (
128)3

615 PRINT"satellite"CHR$(128) "ce
ased"CHR$ (128) "to"; :PRINTR169, " f
unction®; :PRINT@239, "earth” CHR$(
128) "was"CHR$ (128) "destroyed"”;
629 A=359

639 REM FINAL SCORE

649 PRINT@A, "your"CHR$(128) "scor

e"CHR$ (128) ; M;

659 REM NEXT GAME

669 PRINTERSPF, "continued®;

679 QF=INKEYS$

689 IF INKEY$="" THEN 689

699 CLSP:PRINTR196, "ANOTHER GAME
‘)';

790 QF=INKEY$:IF Q@%="" THEN 799
ELSE IF Q%="Y" THEN 209 ELSE 1
F @%="N" THEN END ELSE 799

719 REM YOU'VE WON

729 CLSP:PRINTR179, “congratulati
ons®; :PRINT@234, "earth"CHR%(128)
"was"CHR$(128) "saved";:A=361:G0r
0649

(€86} HYIBN3D3A/Y3IBWIAON) ¥ ON v IWNTOA

08-0OHOIIW

€2 39vd

*¥#%% SIRIUS ADVENTURE 353HHE

COLOUR COMPUTER

19 REM SIRIUS ADVENTURE
20 REM (C) MAY 1983 MLADEN BAUK.

3¢ REM HI-RES WRITER 1.1
(C) 1983 G.D. WILLIAMSON

49 REM MODIFIED FOR THE COLOUR
COMPUTER BY -- MICRO-89

59 A=PEEK(&H1B) ¥256+PEEK{&H1C) -&
H4CD

69 DEFUSRO=A:DEFUSR1=A+&H1D:A=US
RO (9) : PMODE2, 1: PCLS:SCREEN1,1

79 PRINTE64," S I R I US ":PRI
NTe12z8, " ADVENTURE" : FOR X=1TO0Z2
999 : NEXT:PMODE4, 1 :PCLS:SCREEN1, 1
80 CLEAR 299: VB=22: ND=26: L=21
: 0OB=6: LN=337

929 CLS: PRINTE@8,°"Sirius Adventur
e": PM$=">": PF%=" *

199 PRINT@139, "Press: <I> nstru
ctions or*®

119 PRINT@179,*<(B> egin.": CL%="
126 DIM A%(VB), B%(ND), L%(L), B
(OB): GOSUB 1439

139 A$= INKEY%: IF A%$="" THEN 13
1]

149 IF A%$="1" THEN 1729

159 IF A%< >"B" THEN 138

169 PCLS

179 IF LO=0OL THEN 279

189 OL=LO:PCLS: PRINTE@8, "Sirius
Adventure®

199 IF LO>4 AND B(1)< > -1 THEN

PRINT: PRINT® It’s too dark
to see!”": GOTO 279
209 PRINT"I am ...":PRINTL%(LO)

219 LINE(9,109)-(256,109) ,PSET
229 TR=9: PRINTR448,CL%;: PRINTE
448, "Visible objects >>> "3

239 FOR I=1 TO OB

249 IF B(I)=LO THEN PRINTB#%(I);"
. *;: TR= -1

259 NEXT 1

269 IF TR< > -1 THEN PRINTe4é68, "
None.";

279 PRINT@329, "What should I do?
“;CL%;: CH="":GOSUB 19489: PRINT:
PRINT

280 IF C%="" THEN PRINT®"Huh?": G
0710 279

299 FOR I=1 TO LEN(Cs%): IF ASC(

MID$(C%, I, 1))=32 THEN 319

399 NEXT I: GOTO 329

319 LE$= LEFT$(C%, I-1): RIS= M
ID$(CH, I+1, LEN(CH)- LEN(LES)-
1):GOTO 339

320 LE$= LEFT$(C%, I): RI%=""
339 L= LEN(LE$): IF RI%$="" THEN
R= -1 ELSE R= LEN(RI%)

349 FOR I=1 TO VB: IF L> LEN(A%(
I)) THEN 369

359 IF LE$< > LEFT$(A%(I),L) THE

N 369 ELSE 389

369 NEXT I

378 1IF C%< >"" THEN PRINT®"I don’

t understand "CHR%$(34);C$;CHRS(3

4)", check my vocabulary.®": GOTO
279

389 IF R= -1 THEN 429

399 FOR J=1 TO ND

499 IF RI%< >B%(J) THEN NEXT J E

LSE 429

419 PRINT*I don’t understand “CH

RE(34) 5RI$;CHR$(34) ", check my v

ocabulary.®: GOTO 279

428 ON I GOSUB 459,459,459,459,8

39,8890,8890,889, 959,950,959 ,959, 9

89, 1959,989,1239,980,1120,1160, 1

299,1369,2019

439 1IF I>4 AND I<13 THEN 219

449 IF 1=22 THEN 189 ELSE 179

459 IF J<0OB+1 THEN PRINT"I can’t
“"CHR${34);A% (I)+"* *;RI%;CHR% (34
)*!'*: GOTO 279

469 J=J-0B: ON J GOTO 559,649,771

9,759,559,649,719,759,479,499,51

9,539,4796,499,5106,539,799,810,79

2,819

479 1F LO=13 THEN LO=11 ELSE GOS

UB 1869

486 RETURN

476 IF LO=12 THEN LO=11 ELSE IF

LG=14 THEN LO=15 ELSE GOSUB 1869

599 RETURN

519 IF LO=11 THEN LO=12 ELSE IF

LO=15 THEN LO=14 ELSE GOSUB 1869

529 RETURN

539 IF LO=11 THEN LO=13 ELSE GOS

UB 1869

549 RETURN

559 IF LO=2 THEN LO=1 ELSE IF LO

=5 THEN LO=4 ELSE IF LO=6 THEN L

0=5

569 IF L0Q=7 THEN LO=? ELSE IF LO

=11 THEN LO=7

579 IF LO=16 AND B(4)= -1 THEN G

OSUB 1879

589 IF LO=1i6 AND Bi{4)< > -1 THEN
LO=17

599 IF LO=18 AND EB(S)= -1 THEN L

u=19

699 IF LO=18 AND BiSji< > -1 THEN
GOSYB 1879

619 IF LO=15 THEN LO=16

628 IF LO=0L THEN GOSUB 1869

639 RETURN

649 IF LO=1 THEN LO=2 ELSE IfF LO

=4 THEN LO=5 ELSE IF LO=S5 THEN L

0=6

&59 IF LO=9 THEN LO=7 ELSE IF LO
=7 THEN LO=11 ELSE IF LO=16 THEN
LO=15

669 IF LO=17 THEN LO=16

679 IF LO=19 AND B(S)= -1 THEN L
0=18

689 IF LO=19 AND B(S5)< > -i THEN
GCSUB 1879

6929 IF LO=0L THEN GOSUB 1869

799 RETURN

719 IF LO=3 THEN LO=2 ELSE IF LO
=4 THEN LO=3 ELSE IF LO=19 7HEN
LO=7

729 1IF LO=7 THEN LO=8 ELSE IF LO
=19 THEN LO=26 ELSE IF LO=28 THE
N LO=21

739 1IF LO=0OL THEN GOSUB 1869

749 RETURN

759 IF LO=2 THEN LO=3 ELSE IF LO
=3 THEN LO=4 ELSE IF LO=7 THEN L
0=19

7469 IF LO=8 THEN LO=?7 ELSE IF LO
=20 THEM LO=19 ELSE IF LO=21 THE
N LO=29

779 IF LO=0L THEN GOSUB 1869

788 RETURN

779 IF LO=7 THEN LO=6 ELSE IF LO
=18 THEN LO=17 ELSE GOSUB 1869
899 RETURN

819 IF LO=6 THEN LO=7 ELSE IF LO
=17 THEN LO=18 ELSE GOSUB 18649
829 RETURN

839 IF J=9 THEN J=3

849 IF J< >2 THEN PRINT"I can’t
eat that, stupid.®": RETURN

859 IF J=2 AND B(J)=8 THEN PRINT
"I already ate it.":RETURN

869 IF J=2 THEN PRINT"Munch, cho
mp, <{BURP> - the creambun was de
lJicious!'!*": B{2)=@: RETURN

879 PRINT"ERROR": STOP

839 IF J>0OB THEN PRINT"I can’t *
CHR$(34);CHiCHRH(34)".": RETURN
893 IF B(J)= -1 THEN PRINT"®"I alr
eady have it'": RETURN

938 IF B(J)< >LO THEN PRINT®"I ca
n't see the ":PRINTB%(J)" here."

:RETURN

?14 1T=1: FOR I9=1 TO OB: IF "
)= -1 THEN IT=IT+1: NEXT I9? ELS
E NEXT I?

220 IF IT>3 THEN PRINT®"I am carr
ying too much, check inventory
- "IRETURN

72 39vd

08-OHIIW

¥ ON ¥ IWNTOA

(€)6l Y38WIDIA/HIBNIAON!

P3¢ PRINT"0Ok. I add a "B%(J):PR
INT*"to my inventory.*®

943 B(J)= -1: RETURN

2?59 IF J>0B THEN PRINT®I can’t *
CHR$(34) 5CHE;CHR%(34) . " RETURN
96d IF B{J)< > -! THEN PRINT"I d
on’t have a "RI%: RETURN

@79 B(J)=LO: PRINT"Ok": RETURN
?80 1F J>0B THEN PRINT®"I don’t s
ee anything special.®": RETURN
P?a IF B(J)< > -1 THEN PRINT“I a
m not carrying a "B%(J): RETURN
1ga2 ON J GOTO 1919,1026,1030,10
33,10630,1040

1619 PRINT“It burns brightly.®:
RETURN

1029 PRINT"It looks tasty'!®": RET
URN

1938 PRINT"Magic seems to emanat
e from the "B%(J): RETURN

1949 PRIMNT"Its beautiful!®": RETU
RN

1956 IF J>0B THEN PRINT®"You aie
being silly.": RETURN

1860 IF B(J)< > -1 THEN PRINT"I
don’t have the "B%(J)".": RETURN
197a@ IF J< >3 THEN PRINT"Waving
the "B%(J):PRINT" is not very re
warding. ": RETURN

1686 PRINT"The room dims and blu
rs, ard..."3

1°8 FOR I=1 TO 1000: NEXT I
1146 IF LO=13 THEN LO=14 ELSE IF
L0O=14 THEN LO=13 ELSE PRINT"not
hing happens. ®: RETURN

111@ PRINT"I am magically transp
nrted!®": FOR I=1 TO 1090: NEXT I
: RETURN

112@ PRINT"Confirm <Y/N> ?2"3: C
$="%: PRINTELN,CL%: GOSUB 1999
1139 IF C%="Y" THEN A=USR1 (@) :CL
S END

1149 IF C%C >"N" THEN 1129

1199 PRINT:PRINT:PRINT"Confirm
(CANCEL.LED>": RETURN

1168 IN=@: FOR 19=4 TO 6

1170 IF B(I®)=1 THEN IN=IN*20
11833 NENT 19

119¢ IF IN=68 THEN PRINT"Fantast
ic! you have solved the adventu
ret"”

12G@ PRINT"You have®IN"points ~:
PRINT"put n¥ a possible 69."
1210 1IF IN=&~G THEN A=USRI1 (@) :CLS
: END

1273 RETURN

123@ PRINT"I am carrying >>> =;
1240 IN=@: FOR I9=1 T0 OB

1250 IF B{I?)= -1 THEN PRINT"A *
B%(1I9); . ®35: IN= -1

1260 NEXT 19

1276 IF IN<C > -1 THEN PRINT“Noth
ing at ail.”: RETURN

1289 RETURN

1299 PRINT®"Ready tape...press <E
NTER>"

1369 IN$= INKEY$:IFIN%=°°"THENi1396
g

1318 OPEN"G",#-1,"URLORD"

1320 FGR I9=1 TO OB: PRINT#-1,B(
I9) 5 :NEXT 19

1339 PRINTH#-1,L0

1348 CLOSE#-1

1359 RETURN

1369 PRINT"Ready tape...press <E
NTER> "

1379 IN$= IMKEYS:IFIN$=""THEN13?7
9

1380 OPEN"1",#-1, "URLORD"

1399 FOR I9=1 TO OB:INPUT#-1,B(I
Q) :NEXT I9

14900 INPUT#-1,L0

14t8 CLOSE#-1

1420 RETURN

1438 LO=1

1449 FOR I=1 TO VB: READ A%(I):
NEXT 1

1458 FOR I=1 TO ND: READ B%(I):
NEXT 1

1466 DATA GO,WALK; RUN,CRAWL ,EAT,
GET, TAKE, GRAB, DROP, THROW,PUT ,LEA
VE,LOOK, WAVE, EXAMINE, INVENTORY, I
NEPECT,QUI7T,SCORE, SAVE,LOAL, VOCA
BULARY

1479 DATA LAMP,BUN,ROD,RING,STAT
UE,CROWN,N,S,W,E,NORTH, SOUTH, WES
T,EAST ,NW,NE,SW,SE,NGRTHWEST, NCR
THEAST, SOUTHWEST, SOUTHEAST, UP, DO
WN,U,D

1489 DATA 1,6,9,8,12,21

1499 FOR I=1 TO OB: READ B(I): N
EXT I

1569 FOR I=1 TO L: READ L%(I): N
EXT I: RETURN

1519 DATA "at a plateau near a c
lif#f. A rocky path leads so
uth. Some obvious exits: South.

1529 DATA "opon a rocky path leadi

ng north and curving to the ea
st. Some obvious exits: North.
East. "

1533 DATA "at the entrance to a

dark cave. A rocky path to the w
est curves north. There is a sli
ght breeze.Some aobvious exits: W
est. East."

154@ DATA "just inside a dark ca

ve. Lightcomes from an entranc
e to the west. Thers is a dan
k, mouldy smell. A tunnel .>ad
s south. Some obvious exits: W

est. South.*

1556 DATA "in a low north/south
tunnel. Some obvious exits: M
orth. South”®

1569 DATA "in an oval cavern.
There is a forbidding stone stai
rcase here.Some obvious exits: N
orth. Down.*®

1579 DATA ®"in a high,sguare cave
with wallsof frozen ice.There a
re passagesin many directions.So
me obvious exits: North.South.VWe
st.East.Up. "

1586 DATA "in a triangular side-
chamber. Some obvious exits: E
ast. "

1596 DATA "in a musty-smeliing a
lcove.Some obvious exits: South.
1603 DATA “in an eerie chamber -
small squealing sounds come
from the walls.Some obvious ex
its: West.*®

1619 DATA "in an enormous cave.
There is a double pillar of gr

een stone down the centre.Some

obvious exits: North. Southwe
st. Southeast. "

1629 DATA "in a malodourous tunn
el. Some obvious exits: Northe
ast.*”

1639 DATA "in a room in which th
e only VISIBLE exit is the w

ay I came in.Some obvious exits
: Northwest*®

1644 DATA "in a secret room,reac
hed only bymagical means.Some ob
vious exits: Northeast.*®
1659 DATA "in a octagonal room.S
ome obviousexits: North. Southwe
st. "

1666 DATA "in an enormous misty
cavern. Mist obscures the cei
ling. Some obvious exits: North.
South. *

1679 DATA "in a tiny box-shaped
room. Door leads south and stair
s lead downSome obvious exits: S
outh. Down.*

16206 DATA "in a strange room. £
here is a faint whiff ot chlori
ne. Some obvious exits: North.
Up. "

(€861 H38W3D3A/93GWIAON) ¥ ON ¥ IWNTOA

O8-CHOIN

39vd

Sc

1A DATA "1n a steamy chamber,
with warm walls. Some obvious e
xits: West.S5outh.”

1783 DATA "in & large room, litt
ered with alabaster slabs. Some

obvious exits: West. East.*"
1716 DATA "in the throne room of
the evil Urlord! A low door 1

eads east. Some obvious exits: E

ast. "

1723 PCLS:PRINT@Z, ""; :PRINT"Your
quest is to explore the cave
of the evil Urlord, and*®

1739 PRINT"bring back to the edg

e of the cliff the following v

Aaluables:*®
174@ PRINT"1. The white gold rin

9."

1759 PRINT"2. The sacred silver

statue. *®

1768 PRINT"3. The jewelled crown
of the Urlord.";

1779 PRINT:PRINT

1780 PRINT"Be careful...®":PRINT:

PRINT:PRINT

1799 PRINT"Press <C> ontinue.*

1899 FOR I=1 TO 4999

1819 A%= INKEY%: IF A%="" THEN 1

249

1829 IF A%< >"C" THEN 1819

1839 GOTO 179

1849 NEXT 1

1854 GOTO 179

1869 PRINT"You cannot go in that
direction.": RETURN

1878 PRINT"An invisible force pr

events you from passing.*®

1884 FOR I=1 TO 1989: NEXT 1

1899 RETURN

1999 PRINTELN+LEN(CS$) ,PM%;

1919 A%$= INKEY%: IF A%="" THEN 1

?1a

1929 PRINTELN+LEN(CS) ,PF%;: A=AS

C(A%)

1939 IF A>31 THEN 1999

1943 IF A=8 AND LEN(C%) >3 THEN C

%= LEFTH(CH,LEN(C%)-1): PRINTELN

,CL%; :PRINT@GLN,C%;: GOTO 1999 EL

SE IF A=8 THEN 1999

1959 IF A=13 THEN GOSUB2849:PRIN

Te323,"";:FOR 8=1TO8:PRINT"

*; :PRI

NTe3I29, " " :NEXT: RETURN

196 IF A=19 THEN A%$= CHR%(92) E

LSE IF A=27 THEN A%="@"

1979 IF A=9 THEN A%= CHR%(187) E

LSE IF A=31 THEN A%="%"

1929 1IF A=24 THEN C%="°": PRINTEeL

N,CL$3: GOTO 1999

1973 C+=C%+A%: IF LEN(CS) >20 THE
N RETURN

20030 PRINTELN,C%;: GOTO 1999
2019 PCLS:PRINTE8,A%(22) :PRINTRS

q,;
2820 FOR 1I9=1 TO VB: PRINT A%(19
), NEXT I9

2830 A%$= INKEY%:IF A%$="°" THEN 29
39 ELSE RETURN

2949 X=(PEEK(39)X%256+PEEK (49)) - (
PEEK (33) ¥256+PEEK (34)) :RETURN

*%%% MC-19 VADERS &%

MC-108

19 * (C) 1/711/83
SUNBURST SOFTWARE SERVICES

29 GOSUBS29

39 CLEARS99

49 OK=-1:60=-1:Y=29

59 KK=1

60 K1=16946:K2=16948:K3=16952:P0
KEK1,9:POKEK2,9:POKEK3, 9

79 CLS(9)

89 0=9:GOSUB399:V1%$=TF$:0=16:G0S
UB399:V2%=TF%$:0=32:GOSUB399: V3%=
TF%:0=48:G0SUB399:V4%$=TF%:0=64:6G
OSUB399:VS5%=TF%: 0=89: GOSUB399

99 V6%=TF%:0=96:GOSUB399:V7%$=TF%
199 BL$=CHR%(128) +CHR%(128)

119 GN$=CHR%(247) +CHR%(242)

120 GP=499

139 P=1

143 GOSUB158:G0TO179

159 DL$=BL$+BL$+BL$+V1$+BL%+BL%+
V2%+BL$+BL%$+V3%$+BL$+BLS+V4%+BL$+
BL%+VS$+BLE+BLE+V6E+BLE+BLE+V7E+
BL%+BL%+BL%

169 RETURN

170 PRINTE@GP, GN$;

189 I=1+1:1IFI=5GTHENI=0:CLS(9):K
=K+32:KK=KK+2:Y¥=29:F=0:60=-1:IFK
=448THENGOTO0469

196 PRINT@K,MIDS(DL%,P,32);

209 IFOKTHENP=P+1:IFP+20=LEN(DL%
) THENOK=9

219 IFNOTOKTHENP=P-1:IFP=1THENOK
=-1

229 1FPEEK(K1)=254THENPRINTe@GP,B
L%; :GP=GP-1:POKEK1,9: IFGP=479THE
NGP=489

230 IFPEEK(K2)=251THEMPRINT@GP, B

L%;:GP=GP+1:POFEK?2,8: IFGP=S 19 THE

NGP=589

243 IFGOTHENIFPEEK (K3) =247 THENM=

GP-480:M=M¥2:M=M+1:60=8:F=-1:POK

EK3, 0

259 POKE17823,8:SOUND16g, 1 : SOUND

209, 1

268 IFFTHENY=Y-1:IFY<(KK+2THENGOS

UB319

278 IFFTHENSET{(M,Y, 1) :RESET (M, Y+
1)

289 IFY=KKTHENGO=-1:F=g:Y=29

299 GOTO179

300 TF$=CHRS$(137+0) +CHRE (136+0) :

RETURN

316 S=POINT(M,Y-1)

320 ONS+1GOTO0339, 340,350,360, 370
,3808,390,4198

339 RETURN

349 Vi$=BL$:G0T0430

350 V2%$=BL%:G0T0439

368 V3%$=BL%$:G0T0439

376 V4$=BL%:GOT0430

380 VS$=BL%:G0OT0439

390 V6$=BL%:GOT0439

493 CLS(9)

419 V7$=BLS$

429 F=@:G60=-1

439 GOSUB15@:SOUND2g,2:SOUND1g, 4
:SC=SC+18: IFSC=78THENGOT0459

449 RETURN

459 CLS:PRINT"YOU WIN. YOUR SCOR
E WAS 189°:60T0479

460 CLS:PRINT®"YOU LOST. YOUR SCO
RE WAS ";SC

478 PRINT"PLAY AGAIN (Y/N)*

489 IN$=INKEY$:IFIN$=""THEN489g
498 IFIN$="Y"THENRUN3@

560 CLS:PRINT"BYE"

519 END

=23 CLS:PRINTIEENEEE MC 18 MICRO
VADERS *RI%RE";

538 PRINT:PRINT*"SHOOT DOWN ALL O
F THE INVADERS BEFORE THEY LAND
TO WIN. 16 POINTS FOR EA
CH INVADER THAT"

540 PRINT"IS DESTROYED. A BONUS
OF 39 POINTS IS AWARDED FOR
DESTROYINGALL THE INVADERS. MAXI
MUM SCORE IS 189"

556 PRINT"PRESS <A> TO MOVE LEFT

PRESS <S> TO MOVE RIGH

T PRESS THE SPACE BAR TO
FIRE"

568 PRINT:PRINT"PRESS ANY KEY TO
BEGIN*®

579 IN$=INKEYS%:IFIN$=""THENS?9
589 RETURN

9¢ 39Yd

08-0OHIIW

(€861 Y38WID3A/Y3BNIAON) ¥ 'ON ¥ IWNTOA

aazag
X%¥¥ L2/4K BOLD TYPE FOR THE LPVII *%%% 90259 ; YOUR BASIC PROGRAM WILL STILL RUN AFTER YOU
99260 HAVE PUT THE SPACES IN.
TRS-80/SYSTEM-80 99279 ; - THIS PROGRAM SHOULD NOT BE USED TO SPACE OUT
209280 ; BASIC PROGRAMS WITH VERY LONG LINES, AS THEY
99299 ; MAY BECOME TOO LONG WITH THE EXTRA SPACES.
19 LPRINT*"THIS IS A ";:P$="TEST":GOSUB1999 99399 3 ## NOTE-CMD"SPACE" DOES NOT WORK FROM NEWDOS-89,
26 LPRINT“ OF THE *";:P$="BOLD TYPE":GOSUB1900 20319 BUT MUST. BE RUN WHILE IN DOS.
36 LPRINT" SUBROUTINE":END 99320
999 STOP: * BB3IIG ; HY TO USE FROM DISK BASIC
FRREHEK KR F I IIOHOIHHEHOHHO OO 99349 ; ## 1/LOAD BASIC PROGRAM
¥ THIS SUBROUTINE PRINTS P% IN BOLD TYPE. ¥* 99350 ; ## 2/TYPE CMD"S*
¥ WRITTEN BY GEORGE DAU. 19-3-83 FOR THE % 99360 ; H# 3/TYPE SPACE (70 RUN PROGRAM)
% LINE PRINTER VII. * 99370 ;5 uH# 4/TYPE BASIC *
FH R IR KRNI IR NI N H 99380 5 ## TO MOD FOR LEVELZ2 CHANGE THE ORIGIN IN
1039 gO399 ; ## LINE 299 TO SAY 7589H,AND CHANGE LINE 339
ZP = PEEK(16539) : 99499 ; #HH# TO ' DOS EQU G6CCH °’
IF LEN(P%)+ZP > 88 THEN 99419
PRINT CHR%$(13);"P$ TOO LONG.": 994290 ORG GFIOH
END @9439 SBASIC EQU a48A4dH 3 START OF BASIC PTR
ELSE @9449 EBASIC EQU 49F9H : ;END OF BASIC PTR
ZS$ = STRING®(ZP,32): 29459 FIXPTR EQU 1AF8H $ADJUSTS PTRS
FOR Z = 1 TO St #0460 DOS EQU 492DH 3 RETURNS HERE AT END.
POKE 16539,0: 99479
LPRINT CHR%(26) ; ZS$; P$; 299489 NBYTES LD DE, (SBASIC)
NEXT Z: 99499 LD HL, (EBASIC)
POKE 1653%9,PEEK(16539)-1: 995090 OR A
RETURN 99519 SBC HL, DE
29520 INC HL
#9530 PUSH HL
80549 POP BC ;NO. BYTES TO MOVE
99559 RET
$9560 .MOVE cALL NBYTES
29579 LD HL, (EBASIC) ; SOURCE
909589 LD DE,CUT-1 3 DESTINATION
®H¥% 4BK/DISK SPACE UTILITY *¥%¥% 99590 CUT LDDR 3 BLOCK MOVE
BO699 INC HL $POINTS TO START BASIC
TRS-89/SYSTEM-80 99619 INC DE sPTS TO START BAS PROG.
99629 RET
#9639 START DI
90199 ; SPACE/ED 48K DISK 90649 cALL MOVE ;MOVE BASIC PROG
oa110 ; #9659 LOOP1 LD B, dH
99129 ; DENNIS BAREIS (C) 99669 LOOP8 XOR A
98130 ; 286 LENNOX ST PO670 LD (COUNT), A ;ZERO COUNT OF *
90149 ; MARYBOROUGH, 4650. 99689 LD (REM) , A 3 ZERO REM
3015a ; 99699 LOOP3 LD A, (DE)
Aa1&a ; THIS PROGRAM WILL ADD SPACES TO A BASIC PROGRAM 09799 LD (HL) ,A
99179 ; TO MAKE IT READABLE. IT WILL NOT ADD SPACES IF 99710 INC HL
29189 ; THERE IS ALREADY A SPACE. SPACES ARE INSERTED 09729 INC DE
ae199 ; AROUND BASIC KEYWORDS. 99730 DINZ LOOP3 ;MISS LINE NO. & PTR
Ag2a9 ; SINCE SOME PROGRAMS HAVE M/L AFTER REM STATEMENTS 99749 LOOPZ2 LD A, (DE) ;GET BYTE OF BAS PROG
gazia ; IT WILL NOT ADD SPACES TO A LINE AFTER IT HAS 90759 cp 22H i TEST FOR =
3a229 FOUND A REM STAT., BUT ANY SPACES ADDED BEFORE 09769 JR NZ, SKIP
aa23a ; THE REM WILL HAVE TO BE REMOVED. 99779 PUSH AF
99780 LD A, (COUNT)
99790 XOR G1H ;COUNTS (EVEX , 7DD)
09890 LD (COUNT) ,A
99810 POP AF
908209 SKIP cp 80H 3 TEST FOR KEYWORD
99839 JR NC, KEYWRD

(€861 H3IEW3O3Q/Y3IAWIAON) ¥ ON ¥ IWNTOA

08-0HOIIW

/¢ 39vd

ao84ao cpP 3AH 5 WANT SPACE AROUND : 9144@ INC DE

29859 JR Z,COLON 91459 LD A, (DE)
30869 cP BH ;POSSIBLE END OF PROG 91469 cP]

29879 JR Z,ENDPRG 21479 JP NZ,LOOP1

20880 LOOP6& LD (HL), A §STORE BYTE 21489 LD (HL),A

299899 INC HL 81499 INC HL

26909 INC DE 91500 INC DE

96919 LOOP? INC B 3 IF B=9,FIRST BYTE IN LN 91519 LD A, (DE)

299929 JR LOOP2 91529 cP BH

0939 91539 IR NZ,LOOPS

@949 KEYWRD LD A, (COUNT) 21549 LD (HL), A

2a959 cP SH 91559 INC HL

00969 LD A, (DE) 91569 LD (EBASIC) ,HL $ADJUST END BAS PTR
99979 JR NZ,LOOP6 DO NOT ADD SPACE, * ODD 91579 LD (49FBH) , HL 5 ADJUST ARRAY PTR
9989 cP 93H 5 REM TOKEN 91589 LD (49FDH) , HL $ADJUST FREE SPACe PTR
090999 JR NZ,NOTREM 91599 CALL FIXPTR

21999 LD A, FFH 21699 EI

91919 LD (REM) ,A 91619 Jp DOS

91928 NOTREM CP 9SH 91629

?1030 JR Z,ELSE $NO SPC BETWEEN : & ELSE F16398 LOOPS LD B,3H

a1aag LD A, (REM) 91649 h LOOPS

21059 cP oH $ZERO IF NO REM IN LINE 91659 COLON XOR A

21969 LD A, (DE) 91660 LD (COUNT) , A 5 ZERO COUNT OF *
21979 JR NZ,LO0P6& COULD BE M/L AFTER REM 91679 JR KEYWRD

219803 LD A,B 91689 COUNT DEFB oH 3 =EVEN , 1=0DD
a19°9 cP PH 91699 REM DEFB FOH $9=NO REM IN LINE
21199 JR Z,SKIP2 $NO SPACE AT START LINE 91799 END START

91119 DEC HL

91129 LD A, (HL)

91139 cP 29H 3 TEST IF SPACE BEFORE SPACE DUMP

91149 JR Z,SPACE1 $ ALREADY SPACE BEFORE KWRD

g1159 INC HL START END ENTRY

P1169 LD (HL) , 20H $NO SPACE,ADD ONE FO99 FoCC Fo1C

91179 SPACE1 INC HL

#1189 SKIP2 LD A, (DE) GET KEY WORD

9119@ LD (HL) ,A

Fo9g: ED OB A4 49 2A F? 49 B7 ED 52 23 ES C1 C? CD 99

91299 INC HL

91210 INC DE F919: FO 2A F? 49 11 16 F9 ED B8 23 13 C? F3 CD OE F9

91220 CcP PD7H sNO SPACE AFTER THESE KEY F929: 96 94 AF 32 CB F9 32 CC F9 1A 77 23 13 19 FA 1A

21239 JR NC, LOOP2 $sNO SPACE BEFORE BRACKET F939: FE 22 290 A FS 3A CB F9 EE 91 32 CB F9 F1 FE 89

91249 cpP PBCH $NO SPACE AFTER TAB(Fo949: 39 9E FE 3A 28 7F FE 99 28 4B 77 23 13 64 18 DF

91259 JR Z,L00P2 F959: 3A CB F9 FE 99 1A 20 F2 FE 93 290 85 3E FF 32 CC

91269 LD A, (DE) FO69: F@ FE 95 28 2D 3A CC F9 FE 969 1A 26 DD 78 FE 99

91279 CcP 20H s TEST SPC AFTER KEYWORD F979: 28 A 2B 7E FE 20 28 93 23 36 20 23 1A 77 23 13

71289 JR Z,L00P2 Fo80: FE D7 39 AB FE BC 28 A7 1A FE 29 28 A2 36 29 23

a1290 LD (HL) , 20H $NO SPACE, ADD SPACE Fo%99: 18 BB 2B 18 E7 2B 7E FE 29 28 91 23 1A 77 23 13

913909 INC HL FOAG: 1A FE 99 C2 290 F9 77 23 13 1A FE 996 29 12 77 23

#1319 JR LOOP? F9BO: 22 F9 49 22 FB 49 22 FD 49 CD F8 1A FB C3 2D 49

91329 FOCO: ©O6 83 C3 22 FG AF 32 CB F9 18 85 99 99

@1339 ELSE DEC HL

91349 JR SKIP2

21359

91360 ENDPRG DEC HL IO YAHTZEE 336t%

a137a LD A, (HL)

g138@ CP v 5SEE IF SPACE AT END LN MODEL 3

91399 JR Z,SPC s DEL SPC(LEAVE HL AS 1IS)

91499 INC HL

914196 SPC LD A, (DE) 19 REM......... ceeee-YAHTZEE/BAS.ttt tc et eeeeccncncncnncnnnns
91429 LD (HL) ,A ceccccsccecsa(C) 1982 by TOny DOmMigan. .. .cccccececcccecccceancccs
91439 INC HL ceceeccscee...m/]1 is entered into this line..........ccc0cceceen.n

20 CLS:CLEAR7@9:DEFINTA-Z:RANDOM:DIMP1(15),P2(15):BV=13159:C=-1

8¢ 3OVd

08-CGHOIINW

(€861 Y38W3D3Q/YIENIAON) ¥ ON ¥ INNTOA

39 BX=1760:BW=25553: TEST=PEEK (16548) +PEEK (16549) ¥256+5: GOT01 780
49 YP=1:IF (Z$=P1$ANDP1(12) >C) OR (Z$=P2%$ANDP2(12) >C) THENSZELSEYF=1
56 IF (Z$=P1$ANDP1 (1)=CANDP1 (12)>C) THENYG=1:RETURN

60 IF (Z&=P2$ANDP2(1)=CANDP2(12) >C) THENYG=1ELSEYG=0

78 RETURN

89 SC=S(1)+S(2)+S(3)+S(4)+S(5) :RETURN

99 PRINTR@752,K$; : PRINTR88d,K$; : PRINT@948,K$;

183 N=N+J:IF (N=1) THENZ$=P1$ELSEIF (N>3ANDN<6) THENZ$=P2%
114 PRINTE@948, T1%;2%; T2%; : IFN=7THENN=8: GOTO1 88

126 PRINT@IIZ,S%;:JZ=JZ+1:PRINT@379, "Roll No";JZ;

136 IF(JZ=1) THEN2SGELSEIF (JZ=3) THENJIZ=9

140 Y$="":H$="":GOSIB1G30: LE=LEFTS$ (H%, 1)

159 LH=LEN (H$)+C: Y$=RIGHTS (H$,LH) : HE=Y%

166 IFL$="R"THEN17@ELSEIFL$="S"THEN121GELSEPRINT@337,S%; : GOT0140
178 P=121

18@ FORJ=1TO05:K(J)=8:NEXTJI:FORDI=1TOLEN(Y%)

199 Y1$=LEFT$(Y%,1):Y$=RIGHTS (Y$,LEN(Y%) +C)

200 Y2=VAL(Y1%$):K(Y2)=Y2:NEXTDI

216 FORZZ=1TOS

226 IFK(ZZ)<>BTHENP=(121+(K(ZZ)%12)) :GOSUB1178

238 NEXTZZ

240 FLAG=@:G0T0489

253 PRINT@467,A1%;:PRINT@R491,A1%;

266 GG=1:HH=6:WP=8:IF (Z$=P1%) THENSU(1)=8ELSESU(2)=0
279 GOSUB1499

286 GG=7:HH=13:WP=1:IF(Z$=P1%) THENTU(1)=BELSETU(2)=0
299 GOSUB1499

306 P=121:FORW=1T0S:P=P+12:PRINT@P, D7%; : NEXTW: GOSUB1939
318 P=121:FORK=1TO5:P=P+12

320 GOSUB349

338 R=RND(6) :S(K)=R:0ONRGOT0380,399,400,4108,420,430

340 GOSUB1480:PRINT@P,D7%; : GOSUB1489:PRINT@P, DS%;

356 GOSUB1488:PRINTEP,D7%; : GOSUB1486: PRINT@P, D2%;

366 GOSUR148@:PRINT@P,D7%; : GOSUB1489:PRINT@P, D4%;

I76 GNSUR148a:PRINTEP,D7%; : GOSUB1488: RETURN

380 PRINT@P, D1%; : E=USR (BX) : GOT0449

399 PRINTE@P,D2%; :E=SUSR(BX) :G0OT0449

4306 PRIMT@P,D3%; : ESUSR (BX) : GOT0449

418 PRINT@P,D4%; : E=USR(BX) : GOT0440

428 PRIMT®P,DNS®; : E=USR (BX) : GOT0448

333 PRINTQP,D6%; : E=USR (BX)

44g 1F (K=5) THENAS@ELSEX=5@: GOSUB1419

4563 IF (FLAG=1) THENFLAG=8:RETURN

446 1F (ST=0) THENRETURN

478 NEXTK

AR@ @=@+1:GOSUB164¢

498 IF (R=3) THEN®=@: GOTO0121JELSEGOTO1 99

500 M=@:0=0

S16 FORW=1T04:IF (S(H)<(=S(W+1)) THENS3@

520 W1=S(W):S(W)=S(W+1):S(W+1)=W1:M=M+1

538 NEXTW

546 IFM>BTHENSSYELSEO=0

SS@ FORF=1T04:FORG=F+1T0S: IF (S (F)=S(G) } THENO=0+1:H=S(F)
563 IF {0=60RO=30R0=1) THENI=HELSEIF (0=2) THENII=H

S7@ NEXTG,F

580 SC=@:SV=VAL (H%) : IF (SV< 1) THEN1213

596 IF (SU>BANDSV<7) THENG 1GELSEIF (SV=13) THEN639

688 IF (SV<13) THEN67GELSEGOTO1218

610 FORW=1iT0S: IF (S(W)=SV) THENSC=SC+SV:NEXTWELSESC=SC:NEXTW
623 RETURN

639 IF (0=1) 3THENGOSUBA4JELSEGOTO660
649 IF (YPANDNOTYG) THEN669:ELSEIF (YG) THENRETURN

6598 IF (YF) THENRETURN

669 GOSUBS8H:RETURN

6798 SQ=SV-6:0NSAGOT0699,720,759,790,940, 1010

689 GOTO1219

699 IF (({0=3)0R (0=4)O0R(0=6)) THENGOSUBS@: RETURNELSEGOT0799
789 IF (0=10) THENGOSUB4PEL SESC=0: RETURN

718 IF (YPANDNOTYG) THENGOSUB89: RETURNELSEIF (YG) THENRETURN
7298 IF (0=6) THENGOSUBS8S: RETURNELSEIF (0=10) GOSUB49

738 IF (YPANDNOTYG) THENGOSUBS8®: RE TURNELSESC=8: RETURN

749 IF (YF) THENRETURNELSESC=0:RETURN

758 IF(0=4) THENSC=25:RETURN

769 I1F(0=19) THENGOSUBA4GELSESC=0:RETURN

7798 IF(YPANDNOTYG) THENSC=25: RETURNELSEIF (YG) THENRETURN

788 IF (YF) THENRETURNELSESC=98:RETURN

7998 IF (0=10) THENGOSUBA4GELSES828

890 IF (YPANDNOTYG) THENSC=38:RETURNELSEIF (YG) THENRETURN

819 IF (YF) THENRETURN

828 IF(0<>1) THEN9GOELSEW=9

830 W=W+1

849 IF(S(W)=S(W+1) ANDW=4) THEN9SBELSEIF (S(W)<>S(W+1)) THENS39
859 W1=S(W+1):IF(W=1)THENS(2)=S(3):S(3)=5(4):S(4)=S(5):S(5)=W1
869 IF(W=2)THENS (3)=5(4):S(4)=S(5):S(5)=W1

879 IF(W=3)THENS (4)=5(5):S(5)=W1

889 FORW=1TOS5:PRINT@268+Wk2,S (W) § INEXTW

899 V1=9:V2=9

998 IF(S(1)+1=S(2)ANDS(2)+1=S(3)ANDS (3)+1=S(4)) THENV1=1

919 IF(S(2)+1=S(3)ANDS(3)+1=S(4)ANDS (4) +1=S(5)) THENV2=1

928 IF(V10RVZ2) THENSC=3GELSESC=8

933 RETURN

949 IF (0>8) THENGOTO979

958 IFS(1)=S(2)+CANDS(2)=S(3)+CANDS(4)=5(5) +CTHENSC=48ELSESC=0
960 RETURN

978 IF (0=10) THENGOSUB4SELSESC=0:RETURN

989 IF (YPANDNOTYG) THENSC=48: RETURNELSEIF (YG) THENRETURN

999 IF (YF) THENRETURN

1999 SC=9:RETURN

1919 IF(0=18) THENSC=58:RETURN

1928 SC=@:RETURN

1938 DE=9:PRINT@257,STRINGS(60," *);

1949 PRINT@27S, "¥%%% ";Z%;" To GO ¥HHE";

1950 IF (JZ=1) THENPRINT@338, N$;

1969 DE=DE+1:IF (DEC>1) THEN1879ELSEE=USR (BV +19)

1979 J$=INKEY$

1989 IFJ$<>CHRS (13) THEN1120

1999 IF(LEN(J$)=1ANDJZ=1) THENPRINT@337,S%; : E=USR (BV) : RETURN
1199 IF (LEN(H$) >8) THENE=USR (BV) : RETURN

1119 GOTO1670

1120 IF (J%<>"") THENE=USR (BV)

1139 IF(LEN(H$)=1) THENPRINT@337,S$;ELSEIF (J%="") THEN1979
1149 IF tJE<>CHRS(8)) THEN1160

1150 IF (LEN(HS$)>9) THENH$=LEFT% (H$, LEN (H$) +C) :PRINT@347,H%; " ";:6
OTO1979ELSEJ$="": H$="":GOTO1930

1169 H$=H$+IS: IF (LEN(H$) >7) THENHS$="": GOTO1839ELSEPRINT@347,H$; : G
0701970

1179 IF(JZ=1) THENPRINT@, 337,5%;

1189 R=RND(6):S(ZZ)=R:FLAG=1:GOSUB3498

1199 ONRGOTO389,399,409,419, 420,439

1299 RETURN

(€861 Y38W303Q/43ENIAON) ¥ ON ¥ IWNTOA

08-0OHIIN

62 39vd

1210
1270
1220
1240
1250
1269
1279
1289
1299
1300
1319
1329
1339
1349
1359
1369
1379
1389
1359
14990
1419
1429
1439
1449
1459
1469
1479
1489
14°9
1599
1519

YF=@:YP=0:YG=0:PRINT@337,S%;

PRINT@275,Z%31%; : E=USR(BV+35)

H&="":J%="":GOSUB1979

Y36=LEFT$ (H%, 1) IF (Y3%$="R"ORY3%$="S"0ORY3%$=CHR%(13))THEN12190
GOSUBS99

IF (YFANDNOTYG) THENE=USR (BW) :PRINT@337,F%; :GOTO1779

IF (YG) THENE=USR (BW) : PRINT@337, "%¥"; 1;6G%; : GOTO1779

IF (Z%=P1%) THENIF (P1 (SV)=C) THENP1 (SV) =SCELSEGOTO01499
IF(Z%$=P2%) THENIF (P2(SV)=C) THENP2 (SV)=SCELSEGOTO01499
GG=1:HH=6:WP=@: IF (Z$=P1%) THENSU (1) =@ELSESU(2)=0
GOSUB1499

GG=7:HH=13:WP=1:1IF(Z%=P1%) THENTU(1)=0ELSETU(2)=0
GOSUB14%9

IF (N<3) THENN=3: JZ=BELSEIF (NC4ANDN>3) THENN=6: JZ=0
JE="":1H$="":0=0:S (W) =F:FORW=1T0S:5 (W) =F:NEXTW
PRINT@338,E$; : PRINT@260, @%; : E=USR (BV +20)

RE$=INKEY®: IFRE®$=""THEN1370
PRINT@337,S%; :QE=QE+1: IF (RE=26) THEN1729

GOTO9g

PRINT@337,M%3 : E=SUSR (BW) :PRINT@337, 5%} : GOT01229
FORJ=1TOX:NEXTJ:X=8:RETURN

'OUT 254,16 REM SYSTEM 89 EXT CASSETTE
FORA=TEXTTOTEXT+28: READB: POKEA, B: NEXT

ONERRORGOT0145@: DEFUSRO=TEXT : RETURN

POKE 16526,TEXT AND 255 : POKE 16527, INT(TEXT/256) :RETURN
DATA295,127,10,229,193,197,65,16,254,58,61,64,246,2,203
DATAZ215,211,255,65,16,254,239,253,211,255, 193, 16,233,201
NZ=1699+RND (55) : E=USR (NZ) : GOSUB1718: RETURN

FORP@=GGTOHH: IF (WP=8) THENPR=493 +PAX¥64ELSEPR=427+((PA-6) ¥64)
IF (Z$=P1%) THEN1549 :

IF (P2 (PQ)=C) THENGS8=@: GOTO1520ELSEPRINT@PR, USINGU$} P2 (PQ) § : @

8=P2(PQ)

1520
1539
1549

IF (WP=@) THENSU(2)=SU(2)+@B8ELSETU(2)=TU(2) +a8
GOTO1569
IF (P1(PQ)=C) THENG@8=9: GOTO1559ELSEPRINT@PR,USINGUS}P1 (PQ)}: &

8=P1 (PQ)

1559
1569
1579
1589
1599
1699
1619
1629
1639
1649
1659
1669
1679
1689
1699
1790
1719
17209
1739
1749
1759
1769
1779
17€19

IF(WP=@) THENSU (1)=SU(1) +@BELSETU(1)=TU (1) +a8

NEXTPQ

IF (Z$=P1%) THEN@4=1ELSEQ4=2

IF (WP) THEN1620ELSEPT (Q4) =0

IF(SU(Q4) >=63) THENBS (84)=35SELSEBS (Q4) =0
PT(Q4)=SU(Q4) +BS (Q4)
PRINT@851,USINGU%;BS(Q4) § :PRINTER?13,USINGVEIPT (Q4) § :RETURN
PRINT@937,USINGVE3TU(R4) 3 :TS(Q4)=PT (Q4) +TU (Q4)
PRINT@885S,USINGV%3; TS(Q4) 3§ :RETURN .
FOREE=1TOS:R(EE)=S(EE) : NEXTEE

M=

FORW=1TO04: IF (R(W)<=R(W+1))THEN1689

W1=R(W):R(W)=R(W+1) :R(W+1)=W1:M=M+1

NEXTW

IF(M>9) THEN1659

FORW=1TOS:PRINT@7S2+W¥2,R (W)} :NEXTW

RETURN

PRINT@27S5, "==== Game Finished =="

IF(TS(1)>TS(2)) THENPRINT@328,P1%jPE3TS(1)3XE3TS(2)10%5P2%}
IF(TS(2)>TS (1)) THENPRINT@328,P2%3P£3TS(2) §XE3TS(1)30%3P1%3
IF(TS(1)=TS(2)) THENPRINT@339,PP%; TS (1) §PX%;TS(2) } PO%}
RE$=INKEY%: IFRE$=""THEN1769ELSERUN
PRINT@337,S%;:YG=9:G0T01219

GOSUB1439

1799 ONERRORGOTO02319

1890 P=858:G0OSUB2129

1819 PRINT@27S, TI%:GOSUB329:ST=1

1820 E=USR(BV) :PRINT@466,3 : INPUT"First Players Name "jP1%
1839 E=USR(BV) :PRINT@593, ; : INPUT"Second Players Name "}jP2%
1849 IF(LEN(P1%) >S)THENP1%$=LEFT$(P1%,5)

1859 IF(LEN(P2%) >S) THENP2%=LEFT% (P2%,5)

1868 AZ2=LEN(P1%):IF (A2<S5S)THEN P1%=P1%$+CHR%(32):G0T01869
1879 A3=LEN(P2%):IF (A3<(S)THEN P2%=P2%+CHR%(32):G0T01879
1880 E=USR(BV) :FORZ2=1TO13:P1(Z2)=C:P2(Z2)=P1(Z2):NEXT
1899 X=499:GOSUB1419:CLS

1990 A%$=CHR%(188) +STRING%(7,149) +CHR%(188) +CHR%(193)

1919 A$=A%+AE+AE+AE+AS+CHRE(196)

1920 B$=CHR%({191) +CHR%(19%) +CHR% (191) +CHR% (195)

1930 B$=B%+B%+B%+BE+BE+CHR% (196)

1949 CH=STRING%(%,131) +CHR%(195)

1959 CH=CH+CEHE+CE+CH+CSH

1969 A$=A%+BE+BE+CEH

1979 PRINT@3,A%;

1989 PRINT@199,°1";:PRINT@211,"°2" ;:PRINT@223,"3"; :PRINT@235,"4"}§
:PRINT@247,"5"}

1999 PRINT@384,R%} :PRINT@448,§:

2999 PRINT"<C1)> ACeS...cccees. < 7> 3/Kind...... -

2919 PRINT®<(2> Two’S....ccc... < 8> 4/Kind......"

2929 PRINT"<3> Three’'s....... ¢ 9> F/House....."

2639 PRINT"<4> Four’s........ <16> S/Strt....."

2949 PRINT®<(35)> Fives......... <11> L/Strt......"

2059 PRINT"<6> Sixes......... <12> Yahtzee....."

2068 PRINT® Bonus......... <13> Chance......"

2979 PRINT" Subtotal...... Subtotal....”

2989 PRINTR%;:PRINT@R496,"Y A H T Z E E"}

2099 PRINT@S69, "Rnnnn=Roll Dice”j; :PRINT@624,"S =Score Dice”j;

2199 PRINT@688, "Sorted Die Below"j :PRINTE@816, " Total Score®}
2119 GOTO99

2129 D1%$=STRING%(5,128) +CHR%(27) +STRING%(5,24) +STRING% (2, 128) +CH
R%(176) +STRINGS (2, 128) ’

2139 D2%=STRING%(4,128)+CHR%(149) +CHR%(27)+STRING%$(5,24) +CHR% (13
1)+STRING% (4, 128)

2149 D3%$=STRING% (4,128)+CHR%(149) +CHR%(27)+STRING%(5,24) +CHR%(13
1)+CHR%(128) +CHR%(176) +STRING% (2, 128)

2159 DA%=CHR%(149)+STRING%(3,128) +CHR%(149) +CHR%(27) +STRING% (5,2
4) +CHR% (131) +STRING%(3, 128) +CHR% (131)

2169 DS$=CHR%(149) +STRING% (3, 128) +CHR%¥(149) +CHR%(27) +STRING% (5,2
4) +CHR%$(131) +CHR%(128) +CHR%(176) +CHR%(128) +CHR%(131)

2179 D6%=CHR%(149) +STRINGS (3,128) +CHR%(149) +CHR%(27) +STRING% (5, 2
4)+CHR%(179) +STRING%(3, 128) +CHR%(179)

2189 D7%$=STRING%(5,128) +CHR%(27)+STRING%(5,24) +STRING%(5, 128)
2199 E$="Press <(ENTER> To Clear "

2209 F$="% YAHTZEE Not Yet Scored *"

2219 G%$="'s Must Be Scored First *

2229 1%=" Enter Score Please":K$%=STRING%(13,32)

2239 ME=" Incorrect Category®":N$="Press <(ENTER> To Start"”
2249 P%=" WINS With":X$="Points vs":0%=" Points For *°

2259 PP%="¥% DRAWN GAME ¥* ":PX%=" VS ":PO%$=" Points "

2269 Q%=STRING%(49,32) :R$=STRINGH(63, 149) : SE=STRINGH(32,32)

2279 T1%$=CHR%(143) +CHR%(32) : T2%=CHR%(32) +CHR% (143)

2280 US="HH#"VE="HHHR"ITIE="%%A* Yahtzee v1.T HI¥x"

2299 FORA1=1TO8:A1%$=A1%+"%¥X"+CHR%(24) +CHR% (24) +CHR% (26) : NEXTA1
2399 WE="%**":RETURN

2319 PRINT"Error Occurred In "3ERL}" Code"JERR/2+1

0 39Vd

O8-OHIINW

(€861 HIAW3O3IA/YISWIAON) ¥ 'ON ¥ IWNTOA

*EXAE VER D.9 HUUSEHULD ACCOUNTING 338H%

MODEL 4
19 CLEAR S5S9 : VV = INT((MEM - 2098) / 6%9) : VYV = - VUV ¥ (VW < 6
?8) - (VV > 697) ¥ 697:REM
MODULE@/BAS

THE LARGEST MODULE, (MODULEG&/BAS), IS 4203 BYTES LONG

20 CLEAR 62 % VV + 788 : VV = INT((FRE(ZO%) - 790) / 62) : DIM
AS(VV + 1),LBIVV + 1) : F3% = * HHSHBBH.HN" T FAS = ° SEN8, B8,
#H-* : F5% = * "+ F3% + "-»

30 W =1 : SO% = "Press any key te continue ¥* : Z9% = "Total" :
Z1% = "Memory® : Z2% = "Account®" ! Z3% = "Select Function %" :
Z4% = "Journal®" : 2Z25% = "Credit®" : Z6% = "Debit" : Z7% = "Date"
49 PRINT CHR%(15)

59 GOSUB 239 : PRINT @499, "Maximum number o records = ";VUV
INT @899,S0%; :PRINT@1849, " Written by
urst Software Services = 826 ! LN
: GOSUB 69 : GOTO 259

68 ADS = **

78 FOR T = 1 TO LN

89 GOSUB 159 : IF IN$ = CHR%(13) THEN 139 ELSE IF IN$ = CHR%(8)

THEN 119 ELSE IF IN$ = CHR%(32) THEN GOSUB 179

99 AD$ = AD$ + IN$: PRINT @PA,AD%; : NEXT : RETURN

199 NEXT : RETURN

119 IF T < =1 THEN 89 ELSE T =T - 1

120 AD$ = LEFT$(AD%, LEN(AD%) - 1) : PRINT @PA,ADS$; "¥¥%"; : GOTO

89

139 IF FL = @ THEN BL$ = STRING$ (LN - LEN(AD$)," ") : AD$ = AD%$
+ BL% : PRINT @PA,AD%; : RETURN

149 BL$ = STRING$ (LN - LEN(AD%),"9") : AD$ = AD$ + BL$: PRINT

@PA,AD%; : RETURN

159" IN$ = *" IN$ = INKEY$: GOSUB 166 : IF IN$ = "° THEN (59 E

LSE RETURN

160 PRINT @PA,AD%; ;CHR%(143);: RETURN

170 IF FL = & THEN RETURN

189 IN$ = "@" : RETURN

199 T = 1

200 IF T > S THEN AD% = * #" : RETURN

2i9 IF MID$(AD%,T,1) = "@" THEN T =T + 1 : GOTO 299

220 AD$ = STRING® (T - 1,32} + RIGHT$(AD%,6 - T) : RETURN

PR
unb
1

W =

239 CLS : PRINT @@, "#%X Household Accounting Ver
5.9 for the Model 4 *%%";5; : PRINT @8g, "t (
c) 1st November 1983 M1 cro-829 Pty L td

*HH" 5

249 PRINT @169, CHR%(31)5; : RETURN

259 COMMON VV,As$ () ,LB() ,F3%,F4%,F5%,W,S0%,20%,Z1%,22%,23%,24%,25
%,26%,27%,PA,LN,AD, AD%, DT$,RF$, DE$, PR, DB%, CRS, P
260 P=9:GOSUB 239:PRINT@196, “MENU®:PRINT:PRINT:PRINT"1 = Keyboar

d Input H S5 = Save Data*”

279 PRINT:PRINT®"2 = Lpad Data : 6 =
Print Journals”®

289 PRINT:PRINT®"3 = Read Memory : 7 =
Lineprinter Utility"

299 PRINT:PRINT"4 = Edit Memory : 8 =

Ledger Accounts*®

399 PRINT @1299,23%; : PA = 1216 : LN = 1 ©: GOSUB &9
319 AD = VAL(AD$) : IF AD < 1 OR AD > 8 THEN 399

3290 OM AD GOTO 339,499, 349,359, 399,359,379, 389

339 CHAIN °"MODULE1l/BAS*®,ALL
349 CHAIN "MODULE3/BAS",ALL
359 CHAIN "MODULE4/BAS",ALL
369 CHAIN "MODULEG&/BAS*®,ALL
378 CHAIN "MODULEZ/BAS®",ALL
389 CHAIN °“"MODULE8S8/BAS",ALL
398 CHAIN °"MODULES/BAS®,ALL
4909 CHAIN "MODULE2/BAS",ALL
419 REM WRITTEN BY

SUNBURST SOFTWARE SERVICES

16 REM MODULE1 /BAS
26 COMMON Z29%,Z1%,22%,23%,24%,25%,26%,27%,A%() ,LB(),DT$, DES,RFS,
PR%,DB%,CRS$,AD$,AD, VV, W

39 GOTO 419

49 AD$S = ="

S0 FOR T = 1 TO LN

60 GOSUB 139 : IF IN$ = CHR$(13) THEN 118 ELSE IF IN$ = CHR$(8)
THEN 98 ELSE IF IN% = CHR%(32) THEN GOSUB 159

78 AD$ = AD$ + IN% : PRINT @PA,AD%; : NEXT : RETURN

80 NEXT : RETURN

94 IF T < = 1 THEN 68 ELSE T = T -
199 AD$ = LEFT$(AD%, LEN(AD%) - 1)

60

116 IF FL = @ THEN BL$% = STRING% (LN - LEN(AD%)," *) : AD% = AD%$
+ BL$: PRINT @PA,AD$; : RETURN

126 BL$ = STRING$ (LN - LEN(AD$),"@") : AD$ = AD$ + BL% : PRINT

@PA,AD$; : RETURN

139 IN® = *"* : IN$ = INKEY$: GOSUB 148 : IF IN$ = " THEN 138 E

LSE RETURN

149 PRINT @PA,AD$;CHR$(143);5: RETURN

156 IF FL = @ THEN RETURN

160 IN$ = *"g* : RETURN

o

PRINT @PA,AD$; "#¥%"; : GOTO

170 T = 1
189 IF T > S5 THEN AD$% = * g® : RETURN
199 IF MID$(AD%,T,1) = *"@" THEN T =T + 1 : GOTO 189

209 AD$ = STRING$ (T - 1,32) + RIGHT®(AD%,6 - T) : RETURN

219 PRINT @169, CHR$(31); : RETURN

229 CHAIN "MODULE®/BAS", 259,ALL

239 PRINT @194, "KEYBOARD INPUT*"

249 PRINT @320,27%; " #%/ %% /¥%"5 I PRINT @499, “REF NO. X¥¥XXx";
: PRINT @48F, "DETAILS #:##333333H0000EH000HHH0HHEHHE" . ¢ PRINT

@569, "PREFIX #3%"; : PRINT @649, "ACC NO. *¥X"; : PRINT @729,26%;
R Sk O o

259 PRINT @24¢, "RECORD NO. ":Ij

269 PRINT @890 ,25%; " #k¥¥.%#"5; : PRINT @889, “CORRECT (Y/N) %*;
: RETURN

279 GCSUB 219 : GOSUB 239

280 FL = 1 : PA = 328 : LN = 2 : GOSUB 49 : DT$ = AD$: IF DT$ =
"98° THEN RETURN

299 GOSUB 399 : GOSUB 319 : GOSUB 329 : GOSUB 339 : GOSUB 349 :

FL = 1 : GOSUB 359 : GOSUB 369 : GOSUB 379 : GOSUB 389 : FL = 0
: GOTO 399

399 PA = 331 : GOSUB 49 : DT$ = DT$ + AD$: PA = 334 : GOSUB 49

: DT$ = DT$ + AD$: RETURN

319 PA = 498 LN =4 : FL = @ ©: GOSUB 49 : RF$ = AD$: RETURN

320 PA = 488 LN = 31 : GOSUB 49 : DE$ = AD$: RETURN

339 PA = 568 LN = 2 GOSUB 49 : PR$ = AD$: RETURN

349 PA = 648 LN = 3 GOsSUB 49 : PR$® + AD$: RETURN

T
T
#

|

(€861 Y38W3ID3Q/Y3I8WIAON) ¥ ON ¥ IWNTOA

08-OHOIIW

L& 39vd

35¢ PA = 727 2 LN = 5 : GOSUB 49 GOSUB 179 : DB% = AD$ + "_." :

RETURN

360 PA = 733 : LN = 2 : GOSUB 49 : DB% = DB% + AD% : RETURN

378 PA = 887 : LN = 5 ¢ GOSUB 49 : GOSUB 179 : CR% = AD$ + "." :
RETURN

380 PA = 813 LN = 2 : GOSUB 49 : CR% = CR$ + AD$: FL = 8 ©: RE

TURN

396 PA = 894 : LN = 1 : GOSUB 49 IF AD$ = "N" THEN 2796 ELSE IF

AD% < > "Y" THEN 399

.

499 A%(I) = DT$ + RF$ + DE$ + PR$ + DB% + CR% : RETURN
4189 FOR I = W TO VV : GOSUB 279 : IF DT$ = "@6" THEN W = 1 : GOT
0 229

426 NEXT I : GOTO 229

19 REM MOLDULE2/BAS
28 COMMON VV,A%(),LB(),F3%,F4%,F5%,W,S0%,20%,21%,22%,23%,24%,25%
,26%,27%,PA,LN,AD, AD%, DT$, RF%, DE$, PR$, DB%, CR%,P

39 GOTO 238

a9 ADS = **

S8 FOR T = 1 TO LN

60 GOSUB 138 : IF IN% = CHR%(13) THEN 118 ELSE IF IN% = CHR%(8)
THEN 98 ELSE IF IN% = CHR%(32) THEN GOSUB 158

79 AD$ = AD$ + IN$: PRINT @PA,AD%$} : NEXT : RETURN

89 NEXT : RETURN

99 IF T ¢ = 1 THEN 69 ELSE T =T - 1

199 AD$ = LEFTH(AD%, LEN(AD$) - 1) : PRINT @PA,AD%j"¥%"§ : GOTO

69

119 IF FL = & THEN BL%$ = STRING$ (LN - LEN(AD%)," ") : AD% = AD%
+ BL$: PRINT @PA,AD%j : RETURN

120 BL$ = STRING$ (LN - LEN(AD%),"9") : AD$ = AD% + BL% : PRINT

@PA,AD%3 : RETURN

139 IN$ = "" : IN$ = INKEY$: GOSUB 149 : IF IN$ = "" THEN 139 E
LSE RETURN

149 PRINT @PA,AD$JCHR%(143)3: RETURN

153 IF FL = @ THEN RETURN

168 IN& = ="@6" : RETURN

176 T = 1 -

186 IF T > S THEN AD$ = * 2" : RETURN

199 IF MID$(AD%,T,1) = *"@#" THEN T =T + 1 : GOTO 189

209 ADE = STRING®$ (T - 1,32) + RIGHT$(AD%$,6 - T) : RETURN

219 CLS : PRINT @@, "% Household Accounting Ver
5.9 for the Model 4 #¥A%"3 : PRINT @89, "¢ (
Cc) 1st November 1983 M icro-82¢6 Pty L td

A" g

229 PRINT @168, CHR%(31); : RETURN

230 X1% = "LOAD FROM" : GOSUB 319

249 GOSUB 339

259 IF SF = 2 THEN 369

260 GOSUB 349

279 GOSUB 359 : IF AD$ = "E" THEN 239

289 IF SF = 1 THEN OPEN "I",1,NM%

299 IF SF = 1 THEN INPUT #1,W : FOR I = 1 TO W : INPUT #1,A%(I)
: NEXT : CLOSE

399 GOTO 239

319 GOSUB 220 : PRINT @199, "DATA "3 LEFT$(X1%,4)3"

329 PRINT:PRINT" 1 = "IX1%3" DISK":PRINT
tPRINT"® 2 = EXIT TO MENU" : RETURN

339 PRINT @832,Z3%; : PA =848 : LN =1 : GOSUB 49 : SF = VALI(AD
%) : IF SF ¢ 1 OR SF > 3 THEN 339 ELSE RETURN

349 FL = @ : GOSUB 220 : PRINT @428, "ENTER FILENAME ##¥%06%"§ °
PA = 443 : LN = 8 : GOSUB 49 : NM$ = AD$: RETURN

359 PRINT @492, "PRESS ANY KEY WHEN DEVICE READY OR (E)SCAPE **
5 : PA =538 : LN =1 : GOSUB 49 : RETURN

369 CHAIN "MODULE@/BAS",250,ALL

19 REM MODULE3/BAS

20 GOTO 2208

39 ADS = **"

49 FOR T = 1 TO LN

50 GOSUB 120 : IF IN$ = CHR%(13) THEN 1069 ELSE IF IN$ = CHR%(8)
THEN 89 ELSE IF IN$ = CHR%(32) THEN GOSUB 149

69 AD$ = AD$ + IN% : PRINT @PA,AD%$§ : NEXT : RETURN

79 NEXT : RETURN

80 IF T ¢ = 1 THEN SO ELSE T = T - 1

99 AD$ = LEFT$(AD%, LEN(AD$) - 1) : PRINT @PA,AD%}"¥%"3 : GOTO S

[

199 IF FL = @ THEN BL$ = STRING$ (LN - LEN(AD%)," ") : AD$ = AD$
+ BL$: PRINT @PA,AD$§ : RETURN

119 BL$ = STRING% (LN - LEN(AD%),"@") : AD$ = AD$ + BL% : PRINT

@PA,AD%3 : RETURN

120 IN$ = =" : IN$ = INKEY$: GOSUB 139 : IF IN% = "" THEN 120 E
LSE RETURN

139 PRINT @PA,AD$JCHR%¥(143)3: RETURN

149 IF FL = 8 THEN RETURN

159 IN$ = "@" : RETURN

166 T =1

176 IF T > S THEN AD$ = * @* : RETURN

189 IF MID%(AD%,T,1) = "@" THEN T =T + 1 : GOTO 179

199 AD$ = STRING$ (T - 1,32) + RIGHT®(AD%$,6 - T) : RETURN

2909 CLS : PRINT @@, "% Household Accounting Ver

5.9 for the Model 4 #H%"3 : PRINT @89, "¥¥k® (
Cc) 1st November 1983 Micro-829 Pty L Gtd

L2]

219 PRINT @169, CHR%(31)§ : RETURN

229 COMMON VV,A% () ,LB() ,F3%,F4%,F5%,W,S0%,729%,721%,22%,723%,24%,2725
$,26%,27%,PA,LN,AD,AD%,DT%,RF%,DE%$,PR%,DB%,CR%,P

239 GOSUB 219 : GOSUB 249 : GOSUB 2890 : GOTO 349

249 PRINT @199, "Contents of ";Z1%}

259 PRINT @2496,Z7%;" REF DETAILS A
CC NO "31Z6%5 " "31Z5%
269 IF P THEN LPRINT Z7%3" REF DETAILS

ACC NO "3Z6%) " "§Z5%

279 RETURN

280 L =1 : FORI =1 TO W - 1

299 GOSUB 339 : GOSUB 350 : PRINT VUX$

306 L = L + 1 : IFL =20 THEN L =1 : PRINT @1849,S50%; : PA = 1
866 : LN =1 : GOSUB 39 : GOSUB 219 : GOSUB 249

319 NEXT 1

320 PRINT @1840,"END OF DATA - "§S0%; : PA = 1886 : LN = 1 : GOS
UB 36 : RETURN

330 ViI$ = LEFTS(AS(I),2) : V2% = MID$(A%(I),3,2) : V3% = MIDS(AS
(1),5,2) : V4% = MID$(A$(I),7,4) : USE = MIDE(AS(I),11,31) : V6%
= MIDS(A%(I),d42,2) : V7% = MID$(A%(I),44,3) : V8% = MIDE(A%),
47,8) : V9% = MID®(A%(I),55,8) : RETURN

349 CHAIN "MODULES/BAS®,250,ALL
359 UXE = VIs + "/" + V26 + "/" 4+ VU3% + " " + V4% + * " + VUS$ +
- "4+ V6E + V7 + ¢ " 4+ VUB% + " " 4+ VU9% : RETURN

2g€ 39vd

08-OHIIW

(€86} H3GW3D3A/YI8BW3AON) ¥ ON v IWNTOA

19 REM

20 GOTO 229
3@ ADS = "*
a3 FOR T =1 TO LN
S6 GOSUB 129 :

IF IN$ = CHR%(13)
THEN 20 ELSE IF IN$ = CHR$%(32)

MODULE4/BAS

THEN 1966 ELSE IF IN%$ = CHR%(8)

THEN GOSUB 149

6@ ADS = AD$ + IN$: PRINT @PA,AD%; : NEXT : RETURN

79 NEXT : RETURMN

88 IF T ¢ = 1 THEN 50 ELSE T

9@ AND® = LEFT$(AD$, LEN(ADS)
a

=T

- 1)

196 IF FL = @ THEN BL$%$ = STRING%
+ BL$: FRINT @PA,AD$; : RETURN
114 BL$ = STRING$ (LN - LEN(AD%),"@9") : AD$ = AD$ + BL% : PRINT

-1

: PRINT @PA,AD%;" "3 : GOTO S

(LN - LEN(AD%)," ") : AD$ = AD%

@PA,AD%; : RETURN

126 IN$ = " : IN$ = INKEY$: GOSUB 139 : IF IN$ = "° THEN 120 E
LSE RETURN

139 PRINT @PA,AD$;CHR%1{143);: RETURN

140 IF FL = 6 THEN RETURN

15@ INS = “@° : RETURN

160 7 =1

170 IF T > S THEN AD$ = * #" : RETURN

189 IF MID$(AD%,T,1) = *"@°" THEN T =T + 1 : GOTO 179

193 AD$ = STRING$ (T - 1,32)
260 CLS : PRINT @G, "%
5.9 +For the Model 4

Cc) 1st November 1983 M

*HX" 5
210 PRINT @160, CHR$(31); :

230 PRINT @320 ,27%5 "

@s4a, "PRFF IX
"ORRENR XK
243 PRINT @244, "RECORD NO. ©
256G PRINT RRGG,Z5%; " ¥EEKE._*

: PT$ = DT$ + AD¥$: RETURN
279 PA = 4¢®e LN =4 © FL =
264 PA = 488

299 PA = 568 LN = 2 : GOSUB

380 PA = 648 ILN = 3 : GOSUB
319 PA = 727 LN S ! GOSuB
RETIIPN

I20 PA = 723 LM = 2 © GOSUB
338 PA = 8@7 : LN = 5 : GOSUB
RPETURN

344 PA = 813 : LN = 2 : GOSUB
TURN

IS8 A%(T} = DT$ + RF$ + DES$ +
I6@ 1T = 1 ¢ FL = 9

376 PRINT @213, "EDIT "35Z1%;
380 GOSUB 216 : GOSUB 239 :
T B?60, "SFLECT *";

Zoa PRINT @249, "RECORD NO. *
480 GOSUB 640

+ RIGHT$(AD%,6 - T) : RETURN

icro-826

Household Accounting

*¥%%"y : PRINT @8G, "#¥¥

Pty Ltd

RETURN
224 COMMON VVY,AS$(),LB(),F3%,F4%,F5%,W,50%,20%,21%,22%,23%,24%,25
%,Z6%,Z27%,PA.LN,AD, AD$,DT$,RF$, DE$, PR, DB%,CR$,P:GOTO 360
: PRINT @400, °REF NO. #*¥¥%";
! PRINT @480, "DETAILS ¥¥H¥HE%%EHHKRHHINH R NHRHIHOR "5 : PRINT

i
*
263 PA = I3Z1 : GOSUB 39 : DT%

I3
"3
g :
39
30

39

39
39

39

R A = VA &

*%"35 : PRINT @640, "ACC NO. ¢%"; : PRINT e729,

RETURN

Ver

Z6%;

DY$ + AD$: PA = 334 : GOSUB 39

GOSUB 39 : RF$ = AD$: RETURN

LN = 31 : GOSUB 39

: DE$ = AD% : RETURN
PR$ = AD$ RETURN
PR% = PR% AD% : RETURN
GOSUB 169 DB% ADE + *

4o

DB = DB% + AD%
GOSUB 169 : CR$

RETURN
ADE + °

CRs = CR% + AD$: FL = 0

PR%s + DB% + CR% : RETURN

PRINT @832, " "y oc

I3

414 1F Vi4 = "" THEN GOSUB 230 :

PRINT @832, "

PRIN

429 PRINT @328,V1%; : PRINT @331,V2%; : PRINT @334,V3%; : PRINT
@498,V4%; : PRINT @488,VS5S%; : PRINT @568,V6%; : PRINT @648,V7%;
: PRINT e@e727,V8%; : PRINT @897,V9%;

430 PA = 967 : LN =1 : GOSUB 39 : IF AD$ = ";" THEN PRINT @960,
"ADVANCE®"; : I =1 + 1 : IF I > VV THEN I = VW

448 IF AD$ = "+" THEN PRINT @%966,"ADVANCE"; : I =1 + 16 : IF I
> VW THEN I = VvV

459 IF AD$ = "-" THEN I
=06 THEN I = 1

460 IF AD$ = "=" THEN I
¢ =96 THEN I = 1

476 1IF AD$% = * * THEN 659

489 IF AD$ = "E" THEN PRINT @969, "% EDIT #"3 : GOSUB 599 : GOTO

389

498 GOTO 399

566 FL = 1 : PA = 328 : LN = 2 : GOSUB 38 : IF AD$ = "@8" THEN D

TH = ViE + V2% + V3% : PRINT @328,VI1%;"/"3V2%;"/":V3%; : GOTO S2

1]

it
-
!

1 : PRINT @960, "REVERSE"; : IF I <«

]

I - 19 : PRINT @969, "REVERSE"; : IF 1

519 DT$ = AD$: GOSUB 269
526 GOSUB 276 : IF RF$% = " " THEN RF$ = V4% : PRINT @498,RF%;
539 GOSUB 289 : IF DE$ = * " THEN

DE$ = V5% : PRINT @488,DE%;

549 GOSUB 299 : IF PR% = * " THEN P1% = V6% : PRINT @568,V6%; @
GOTO 569

559 P1% = AD$
569 GOSUB 399 :
,V7%; : GOTO 589
578 PR$ = P1% + AD$

580 FLL. = 6 : GOSUB 319 : IF AD%
e727,v8%; @ GOTO 696

596 GOSUB 166 : GOSUB 329

600 FL = @ : GOSUB 3396 : IF AD% = ° " THEN CR% = V9% : PRINT
@897,VP%;: : GOTO 629

619 GOSUB 168 : GOSUB 349

628 GOSUB 359

639 FL = @ : RETURN

649 V1% = LEFT$(A%(I),2) : V2% = MIDH(A$(I),3,2) : V3% = MID$ (AT
(1),5,2) : Vvas = MIDS(A%K(I),?,4) : V5% = MID$(A%(I),11,31) : V&$
= MID$(A%(I),42,2) : V7% = MID%(A%(I),44,3) : V8% = MIDS(A%(I),

47,8) : V9% = MID$(A%(I),55,8) : RETURN

650 CHAIN "MODULE@G/BAS®,250,ALL

IF AD% " “ THEN PR% = P1% + V7% : PRINT @648

]
N

" THEN DB%

v8$s : PRINT

16 REM MODULES/BAS

26 COMMON VV,AS$(),LB(),F3%,F4%,F5%,W,S0%,20%,Z1$, 22%,23%, 24, Z5%
,26%,27%,PA,LN,AD,ADS, DTS, RF$, DES, PRS, DB, CRS, P

36 GOTO 238

40 ADE = "~

S6 FOR T = 1 TO LN

&6 GOSUB 136 : IF IN$ = CHR$(13) THEN 116 ELSE IF IN$ = CHR$(8)
THEN 96 ELSE IF IN$ = CHR$(32) THEN GOSUB 150

78 AD$ = AD$ + IN$: PRINT @PA,AD$; : NEXT : RETURN

86 NEXT : RETURN

96 IF T < = 1 THEN 68 ELSE T = T - 1
106 AD$ = LEFT$(AD$, LEN(ADS) - 1) :
60

116 IF FL = 8 THEN BL% = STRING$ (LN - LEN(AD$)," " : AD% = ADS$
+ BL$: PRINT @PA,AD$; : RETURN

126 BL$ = STRING® (LN - LEN(AD$),"6") : AD$ = AD$ + BL$: PRINT

@PA,ADS; : RETURN

A e

PRINT ?2PA,AD%; "¥%#"; : ~T770

(€861 Y38W303Q/43GNIAON) ¥ ON v SNMNIOA

08-0OHOIIW

€€ 39vd

176 IN® = """ : IN% = INKEY® GOSUB 149 : IF IN% = "" THEN 139 E
LSE RETURN
149 PRINT @PA,AD$;CHR%(143);5: RETURN
156 IF FL = @ THEN RETURN
160 IN$ = "@" : RETURN
176 T = 1
186 IF T > 5 THEN AD% = * #" : RETURN
193 IF MID$(AD%,T,1) = "@" THEN T =T + 1 : GOTO 189
208 ADE = STRINGS (T - 1,32) + RIGHT$(AD%,6 - T) : RETURN
219 CLS : PRINT @@, "Xx¥ Household Accounting Ver
5.9 +for the Model 4 *%%"5; : PRINT @89, "Xxkx (
c) 1st November 1983 Micro-82¢9 Pty L td
XXX
220 PRINT @169, CHR%(31); : RETURN
239 X1%$ = "SAVE TO" : GOSUB 319
24@ GOSUB 330
25@ IF SF = 2 THEN 360
268 GOSUB 340
Z79 GNSUB 350 : IF AD$ = "E*" THEN 239
280 IF SF = 1 THEN OPEN "0",1,NM$
29@ IF SF = 1 THEN PRINT #1,W : FOR I =1 TO W : PRINT #1,A%(I)
© NEXT : CLOSE
308 GOTO 239
316 GOSUB 229 : PRINT @199, "DATA "; LEFT$(X1%,4);"
320 PRINT:PRINT" 1 = "3;X1%5" DISK":PRINT
:PRINT" 2 = EXIT TO MENU" : RETURN
339 PRINT @832,2Z23%; : PA = 848 : LN =1 : GOSUB 49 : SF = VALI(AD
%) ¢ IF SF < 1 OR SF > 3 THEN 339 ELSE RETURN
348 FL = 9 : GOSUB 226 : PRINT @428, "ENTER FILENAME 6645006t ; ©
PA = 44 : LN = 8 : GOSUB 49 : NM$ = AD$: RETURN
358 PRINT €492, "PRESS ANY KEY WHEN DEVICE READY OR (E)SCAPE **
5 : PA =538 : LN =1 : GOSUB 49 : RETURN
366 CHAIN "MODULE@/BAS",250,ALL

19 REM MODULEG&/BAS

290 GOTO 2206

39 ADE = " *

46 FOR T =1 TO LN

S@ GOSUB 129 : IF IN$ = CHR%(13) THEN 169 ELSE IF IN$ = CHR%(8)

THEN 89 ELSE IF IN$ = CHR%(32) THEN GOSUB 149

6@ AD$ = AD$E + IN$: PRINT @PA,AD%; : NEXT : RETURN

79 NEXT : RETURN

80 IF T < =1 THEN 59 ELSE T =T - 1

990 AD$ = LEFT$(AD%, LEN(AD$) - 1) : PRINT @PA,AD$;"¥%x"; : GOTO S

a

196 IF FL = @ THEN BL$ = STRING$ (LN - LEN(AD%)," ") : AD$ = AD%
+ BL$: PRINT @PA,AD%; : RETURN

116 BL$ = STRING$ (LN - LEN(AD%),"@g") : AD$ = AD$ + BL% : PRINT

@PA,AD$; : RETURN

126 IN® = "" : IN$ = INKEY$: GOSUB 139 : IF IN$ = "" THEN 1290 E

LSE RETURN

139 PRINT @PA,AD%;CHR%(143);: RETURN

149 IF FL = @ THEN RETURN

156 IN$ = "@" : RETURN

160 T =1

1796 IF T > 5 THEN AD$% = * 2" : RETURN

186 IF MID$(AD%,T,1) = "@" THEN T =T + 1 : GOTO 179

1°9 AD$ = STRING$ (T - 1,32) + RIGHT%(AD%$,6 - T) : RETURN

200 CLS : PRINT @@, "¥tx Household Accounting Ver
5.9 for the Model 4 *%%"§ : PRINT @89, " %Xx {
c) 1st November 1983 Micro-829 Pty L td

XK

216 PRINT @160, CHR$(31); : RETURN

226 COMMON VV,A$(),LB(),F3%,F4%,F5%,W,S0%,20%, Z1%, 22%, Z3%,24%, 25
%,26%,27%,PA,LN, AD, AD$, DTS, RF$, DE$, PR, DB, CR$, P:GOTO 246G

239 PRINT @329,Z7%;" REF DETAILS A
CC NO "3Z26%; " "5Z5%
249 IF P THEN LPRINT 2Z7%;" REF DETAILS

ACC NO "3Z6%5 " "3Z5%

259 RETURN

269 GOSUB 209 : PRINT @199,Z4%;"s Available®":PRINT:PRINT"1 = Pri
nt Ledger Balances H 4 = GJ General ";Z4%:PRINT"2 =
CP Cash Payments ";Z4%;" : O = SJ Sales ";Z4%:PRINT"3
= CR Cash Received ";Z4%" i

279 PRINT" 6 = Return To Main Menu”

280 PRINT @832,Z23%; : PA =848 : LN =1 : GOSUB 39 : AD = VAL (AD

%)

299 IF AD < 1 OR AD > 6 THEN 289

399 ON AD GOTO 569,319,329,339,349,539

319 PT$ = "CASH PAYMENTS" : KA$ = "CP" GOTO 359

320 PT$ = "CASH RECEIVED" : KA%$ = "CR" GOTO 359

339 PT$ = "GENERAL" : KA$ = "GJ" : GOTO 359

349 PT$ = "SALES" : KA$ = "SJ"

359 GOSUB 369 : GOSUB 399 : GOTO 419

369 PRINT @832,°1IS THE PRINTER REQUIRED (Y/N) ¥*"; : PA = 862 : L

N =1 : GOSUB 39

378 IF AD% < > "N" AND AD%$ < > "Y" THEN 369

380 P = (AD$ = "Y") : RETURN

399 ZK$ = "" : PRINT @896, "WHICH ";Z7%;" DO YOU REQUIRE *¥/%¥X/*¥
"3 * FL =1 : PA =922 : LN =2 : GOSUB 39 : £% = AD$: IF E$ =
"Pa" THEN E$ = "°S" ! ZK$ = "ALL " : GOTO 419

499 PA = 925 : GOSUB 39 : E$ = E$ + AD$: PA = 928 : GOSUB 39 :

E$ = E$ + AD% : RETURN

419 GOSUB 219 : PRINT : PRINT PT$;" "3Z4%;" FOR ";ZK®;"(";Z27%;5;")

"SE : IF P THEN LPRINT : LPRINT PT$}" "3Z4%;" FOR ";ZK$;"(";2Z27%

i")"S5ES

420 DT# = 6 : CT# = 6 : BL# = 8 : GOSUB 239

439 FOR I = 1 TO W

449 1IF MID%(A%(I),42,2) < > KA$ THEN 499

459 IF E$ = "'S" THEN 479

460 IF E$ < > LEFT$(A%(I),6) THEN 499

479 GOSUB 549 : GOSUB 559 : PRINT VUX%$: IF P THEN LPRINT VX%

480 DR# = VAL(MID$(A%(I),47,8)) : CR# = VAL(MID%(A%(I),55,8))

: DTH# = DT# + DR# : CT# = CT# + CR# . BL# = BL# + DR# - CR#

499 NEXT

S59@ PRINT : PRINT Z@%; TAB(36)3 : PRINT USING F3%;DTH#;CT# : PRIN

T "BALANCE *"; : PRINT USING F4%;BL#

519 IF P THEN LPRINT : LPRINT Z@%3 TAB(36)3 : LPRINT USING F3%;D

TH;CTH © LPRINT "BALANCE "5 : LPRINT USING F4%;BL#

520 PRINT @969, "PRINTOUT COMPLETE - "3;S0%) : PA = 1666 : LN =1

: GOSUB 39 : GOTO 269

539 CHAIN "MODULE@/BAS",250,ALL

549 Vi1$ = LEFTS(A%(I),2) : V2% = MIDS(A$(I),3,2) : V3 = MIDS(AS

(1),5,2) : V4 = MID$(A%(I),7,4) : VS% = MIDE(A%(I),11,31) : Ves
= MID$(A%(1),42,2) : V7% = MID$(A%(I),44,3) : V8% = MIDE(A%(I),

47,8) : V9% = MID$(A%(I),55,8) : RETURN

959 VUX$ = VI$ + "/" + V2% + "/~ + V3% + " " + V4% + * " 4+ USHE +
= "4+ V6E + V7 + " " 4+ V8% + " " + V9% : RETURN

Y€ 39Vd

08-0OHIIN

(£861 Y38W303A/438WIAON) ¥ ON ¥ IWMTOA

560 GOSUR 208 : GOSUB 368 : GOSUB 200 : GOSUB 710 : PRINT @463,"
¥ %% WAIT % % %" : FORI =1 TOW -1 : GOSUB S48 : LB(I)

= VAL(RIGHT$(V7%$,3)) 2 NEXT I : J = @ : DTHh = @ : CTH = & : BL#
=0

578 GOSUR 216 : PRINT : PRINT "ACC NO."; TAB(16)3Z6%;"S"; TAB(34
);75%;"S"; TAB(55);Z20%

S8g IF P THEN LPRINT : LPRINT "ACC NO."3; TAB(16);Z6%;°S"; TAB(34
)575%; "S"; TARBR(55);2Z0%

593 TTH = 6 : DRH = @ : CR# = @
69 VF = LB(J) : FOR I = 1 TO W
THEN GOSUR 7989

610 NEXT I : LB(J) =@ : IF J = W THEN 679 ELSE 620

620 IF VF = @ THEN 599

630 TTH = DRH - CR# : DT#H = DTH + DRH : CTH = CTH + CRH : BL# =

BLH + TTH

©a@ PRINT * *; MID$(A%(J),44,3); : PRINT USING FS&;DRH;CRH; TT#H

659 IF P THEN LPRINT * *; MID%(A%(J),44,3); : LPRINT USING FS5%j§

DR#:CRH#; TTH

666 GOTO S98

679 PRINT : PRINT Z8%; : PRINT USING FS5$;DTH;CTH;BL#H

683 IF P THEN LPRINT : LPRINT Z8%; : LPRINT USING FS$;DTH#;CT#H;BL

8

696 PRINT ©1846,S0%; : PA = 1866 : LN = 1 : GOSUB 38 : GOTO S390
769 GOSUR 543 : DR4 = DRH + VAL{V8%) : CRH = CR# + VAL(V9%) : LB
(1) = @ : RETLRN

714 PRINT @443,"% % % SORTING % % ¥ : FOR SC = 1 TOW - 1 : F

OR SA =1 TO W - 1

728 SA%$ = MID$(A%(SA),28,3)

730 SRS = MID$(A$(SA + 1),28,3)
IF SA%$ > SB$ THEN SB$ = A% (SA)
1) = SB%

738 NEXT SA : NEXT SC : RETURN

J =73 + 1
IF LB(I) = VF AND LB(I) < > @

IF SB$ = "" THEN GOTO 749 ELSE
A% (SA) = AS(SA + 1) : AS(SA +

i

19 REM MODULE7/BAS
26 ON ERROR GOTO 196

39 GOTD 5@

a3 PRINT @168, CHR®(31); : RETURN

5@ COMMON VV,A$(),LB(),F3%,F4%,F5%,W,S0%,20%,21%,22%,23%,24%,25%
,26%,27%,PA,LN,AD,AD$,DTS,RF%, DES,PRS, DB, CRS, P

68 GOSUB 4@ : PRINT @198, "LINEPRINTER UTILITY":PRINT:PRINT" TYPE

HEADINGS OR NOTES AS PERUIRED":PRINT:PRINT*TYPE "; CHR$(34); "EXI
T*: CHR%(34);" TO RETURN TO MAIN MENU":PRINT CHR%(14)

78 M% = " : INPUT M$: IF M$ = "EXIT" THEN PRINT CHR$(15):GOTO

oa

83 PRINT M$: LPRINT M$% : GOTO 79

°a CHAIM "MODULE@/BAS™, 258, ALL

13 1F ERP = S7 THEN PRINT"Device I/0 error”:PRINT"PLEASE CONNEC
T PRINTER OR TYPE EXIT":PRINT:RESUME 78

10 REM MODULE8/BAS

29 GOTO 229

XA ADE = =

43 FOR T = 1 TO LN

59 GOSUR 120 : IF IN$ = CHR$(13) THEN 189 ELSE IF IN$ = CHR$(8)
THEN 20 ELSE IF IN$ = CHR$(32) THEN GOSUB 149

6@ AD% = AD$ + IN$: PRINT @PA,AD%; : NEXT : RETURN

?@ NEYT : RETURN

89 [F T < = 1 THEN SO0 ELSE T =T - 1

93 AD$ = LEFT$(AD%, LEN(AD%) - 1) : PRINT @PA,AD%; "¥%"; : GOTO S

[

199 IF FL = @ THEN BL$ = STRING$ (LN - LEN(AD%)," ") : AD$ = AD$
+ BL% : PRINT @PA,AD%; : RETURN

114 BL$ = STRING$ (LN - LEN(AD%),"9") : AD$ = AD$ + BLS$: PRINT

@PA,AD%; : RETURN

120 IN$ = "" : IN$ = INKEY$: GOSUB 139 : IF IN$ = "" THEN 120 E

LSE RETURN

130 PRINT @PA,AD%$3;CHR%(143)3: RETURN

149 IF FL = @ THEN RETURN

150 IN$ = "@" : RETURN

160 T = 1

1786 1IF T > S THEN AD$% = * 2" : RETURN

189 IF MID%(AD%,T,1) = "@" THEN T =T + 1 : GOTO 179

199 AD$ = STRING$ (T - 1,32) + RIGHTS(AD%,6 - T) : RETURN

299 CLS : PRINT @@, "%t Household Accounting Ver
5.9 for the Model 4 *%%"; : PRINT @80, " ¥¥x (
c) 1st November 1983 Micro-829 Pty L td

XT3
219 PRINT @160, CHR%(31); : RETURN

226 COMMON VV,A$(),LB(),F3%,F4%,F5%,W,S0%,20%,Z1%,22%,23%,24%,25
%,26%,27%,PA,LN,AD, AD$, DTS ,RF$, DE$, PR$, DB$, CR$,P:GOTO 299

239 PRINT @3290,Z7%3" REF DETAILS A
CC NO "526%; " "3Z5%
24@ IF P THEN LPRINT Z7%;" REF DETAILS

ACC NO "I1Z6%5 " "3 2Z25%

258 RETURN
268 PRINT @832,"IS THE PRINTER REQUIRED (Y/N) **; : PA = 862 : L
N =1 : GOSUB 38

276 IF AD$ < > "N" AND AD% < > "Y" THEN 260

286 P = (AD$ = "Y") : RETURN

299 GOSUB 216 : PRINT @198, "Ledger ";Z2%;"s”:PRINT:PRIMT"Type ";
CHR$(34);"999"; CHR$(34);" To Exit"

399 GOSUB 268

316 PRINT @960,"Which "3;Z2%;" No. Do You Require ¥¥%X"; : PA = 99
3 :LN=3:FL =1 : GOSUB 38 : N = VAL (AD%)

326 IF N < 1 OR N > 999 THEN 310

330 BLW = O : DTH = @ : CTH =0 : IF N = 999 THEN 489

340 GOSUB 280 : PRINT : PRINT Z2%j" NO. ";AD%; : IF P THEN LPRIN

T : LPRINT Z2%;" NO. ";AD%$

350 GOSUB 238 : FOR I = 1 TO W

368 IF N < > VAL(MID$(A%(I),28,3)) THEN 398

370 GOSUB 468 : GOSUB 478 : PRINT UX$: IF P THEN LPRINT VX$
388 DR# = VAL (MID$(A%(I),47,8)) : CR# = VAL{ MID$(A%(I),55,8))
: DTH = DTH + DRH# : CTH = CTH + CR# : BLH = BLH + DRH - CR#H

396 NEXT

4908 PRINT : PRINT Z8%; TAB(36)3 : PRINT USING F3%;DTH#;CT#H

416 IF P THEN LPRINT : LPRINT Z@%; TAB(36); : LPRINT USING F3%;D

TH;CTH

420 PRINT Z2%;" BALANCE"; : PRINT USING F4%;BL#

436 IF P THEN LPRINT Z2%;* BALANCE"; : LPRINT USING F4%;BL#

440 PRINT : PRINT : IF P THEN LPRINT * " : LPRINT * *

45¢ GOTO 319

468 Vi$s = LEFTH(A%(I),2) : V2% = MID$(A$(I),3,2) : V3% = MIDE(AS
(1),5,2) : V4% = MIDS(A%(I),7,4) : VUSE = MIDE(A&(I),11,31) : Vés
= MID$(A%(I),42,2) : V7% = MIDS(A%(I),44,3) : V8% = MIDS(A&(I),

47,8) : V9% = MID&(A%(I),55,8) : RETURN

478 UXE = VI® + "/" + V2% + "/" + U3% + " " + V4% + = " + USE +
SRR VY S V2 "+ u8E + " " + V9% : RETURN

486 CHAIN "MODULE®/RAS",258,ALL

(€86} Y38W3D3Q/H38W3AON) ¥ ON ¥ IWNTOA

O08-OHOIOIW

GE 3OVd

PAGE 36

MICRO-80

VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983)

Aadaia
AAA2A
AAA3a
aaaqaa
AAATA
AAASAE
gae~ g
fjelakeial
aaaoa
aa1aa
aaia
aal12a
34134
Aa14a
AA150
AA1 63
aa1oa
AA13a
aaiea
BA?ASB
A2 A
AA220
aal3a
AR24A
AA2SE
AA26a3
AA27aA

aarAa
aazoa
Aa3aa
@3310
28320
Fa333
#3340
FA3ISG
BB369
@3370
29383
B3390
2Aa439
Ag41@
aaara
AAQRA
anaqa
AA4SH
AAqsa
AAQT A
AAQRA
AAQoG
ABSAD
@aS10
GaS20
AAS3IFG
AASAG
AAS5a
BAS6H
aAas7a
89539
aasSoa
83600
GA619
80620
GAL3IG
AB4649
BA659
BA668
8a67a
BAA8G
AA&oa
aAB7933
aaz1a
aAA729
GA73A
aa74aa
AA75A

s sssssrss s s s s sy ey sy
* WRITER 1.1 *
¥(C) 1983 G.D. WILLIAMSON®
A EEEE SR EEEREEEESE S S e sy
*
*
*#This program is in two parts
*
¥This is the loader
*
*
SCRST EQU $BA Basic’'s pointer to screen start
ENDBAS EQU $1B End of Basic program pointer
ORG =]
START LDX (EMDBAS Get end of Basic pointer
TFR X,U Keep it in U
LFAX $4CD,X Length of our program
|TX <ENDBAS Redirect end of program pointer
LEAX REGIN,PCR Point to start of program
L.DY #44CD Counter
LanP I.DA s X+ Get byte
STA s U+ Reposition it
LEAY -1,Y Counter down
BNE LOGP ?Go again
LDA #$39 RTS code
STA START,PCR Do not allow to be exec’d again
RTS Back to Basic
*
*
¥This is the entry point for USRS
*
*
BEGIN PSHS CC,X Save them
ORCC #8506 Disable interrupts
TST <FLAG, PCR 7?already set
BNE BACK1 If set, exit
INC <FLAG,PCR If not, set it
LDX %168 Get Basic’s return address
STX 1+RET1,PCR And save it
LEAX {CHROUT,PCR Point to our routine
BACK STX €168 Direct Basic to our patch
RACK1 ANDCC #EAF Enable interrupts
PULS X,CC,PC Back to Basic
*
*
*This is the entry point for USRI
*
*
PSHS X, CC Save them
ORCC #8590 Disable interrupts
TST <FLAG, PCR ? set
BE@ BACK1 Back if so
CLR <FLAG,PCR I¥ not, clear it
RET1 LDX #%1111 Dummy address - see line 399
BRA BACK Reset RAM hook for Basic
*
*
¥Start of our main routine
*
*
CHROUT PSHS u,b,X,Y,CC Save all
CMPA #8 ?Backspace
BNE CRTRNG If not look for more controls
LDA #HE20 ASCII for space
BSR DSPLY Go show it
LEAX -1,X Back one pos
BSR SHOW Rub out charac
BRA STOP Exit
CRTRNG CMPA HE26 ?Control charac
RLO STOP Exit i so
CMPA HE7F ?Graphics charac
BHI STOP Exit if so
RSR DSPLY Go show it
BSR SHOW
RRA STOP Exit

VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983)

MICRO-80

PAGE 37

AA7 69
AR?2a
AXTRA
AA?9G
fofsiayo o]
AAR1 G
AAR2G
29839
A33493
GaR’Sg
23869
A9879
298R9
ag899
29909
93910
@8929
Aa9d
AG94g
aaosd
BAP6A
AaI7A
29989
29994
19393
91610
919026
A1639
@1946
A1 A59
G1969
31879
21989
21494
81166
@1110
91120
91130
g1140
@1150
31169
21178
$11805
a119a
21200
@121a
?1229
31238
312403
91250
31260
@1278
91289
31299
813969
213106
91326
913396
#1348
913598
91369
613796
913896
91399
214808
91410
91429
#1438
914496
31459
21469
31470
31480
91498
21569

DSPLY

SHOW

DSPLY1

PSHS
LDD
PSHS
LSRA
RORB
LSRB
LSRB
LSRB
LSRB
LDA
MUL
LDA
MUL
TFR
PULS
ANDB
ABX
LDD
LFAX
PULS
RTS
SUBA
LDB
MUL
LEAU
LEAU
LDB
LDA
STA
LEAX
DECB
BNE
RTS
PULS

FCB

A Save charac
<%88 Basic's cursor pos
B Save LSB
MSB of A into carry bit
And into MSBit of B
Shift into lower nybble
#S0C 12 bytes/charac
Modify position
HE29 32 bytes/row
Get row position
D, X Swap for later
B Retrieve it
HE1F Clear bits 5-7
Get column position
¢(SCRST Get screen start
D,X Get position on screen
A Retrieve charac
#5208 Adjust for table
#E0C 12 bytes/charac
So modify
TABLE, PCR Point to start of table
D,U Point to charac
#s0C 12 bytes/charac
LU+ Get byte from table
s X Display it
$20,X Down one row
Counter down
DSPLY1 7?Get more

Back to sender

u,D,X,Y,CC,PC Back to Basic

Store to show which USR routine

#Start of character table

TABLE

FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB

24
24

NN RANORNROO VDOV NI RN AR .

SPACE

is invoked

12049
12058
12060
12078
12080
120899
12108
12118

3999:
3919:
3929:
3939:
3949:
3959:
3069:
3979:
3989:
3999:
39A0:
39BO:
30COa:
39D9:
39EQD:
39F9:
3199:
3119:
3120:
3139:
3149:
3159:
3169:
3179:
3189:
3199:
31A0:
31BG:
31Ca:
31D9:
31E9:
31F9:
3209:
3210:
3220:
3239:
3249:
3259:
3269:
3279:
3289:
3299:
32A0:
32B9:

9E1B
24CD
3411
8D99
596D
8108
2542
34064
35049
3D33
SA26
2999
2424
2424
28909
1212
29909
9990
9999
287F
1808
2999
1920
2999
41901
2101
2999
4149
28190
2999
29909
1899
2299
2019
2898
2999
2121
4949
2990
4940
4141
29909
2494
4844

FCB
FCB
FCB
FCB
FCB
FCB
FCB
£END
1IF13 3987
A688 A7CH
1AS8 6D8C
1738 8C18
8C62 27F3
260A 8620
817F 223E
4456 5454
Ca1F 3ADC
8D@P 1233
F639 35F7
0008 0808

7E

398D
8639
8C7A
AF35
1111

8D39
29038
3D86
8239
CoA7

9912
A78C
BEZ1
9134
20E8
2946
3492
293D
8929
8439

198E
E139
68AF
111A
3477
8129
DCcss
1F91
Cé69C
8829

2899

7E24 2499
2999 79651
2C18 2542
2990 G099
2998 9494
4122 147F
2898 98990
1999 9999
29909 9999
4949 9999
2998 1898
2204 9819
413E 9999
P97F 40949
497E 4141
29290 9999
PO3E 4141
9018 1899
1818 9819
2999 9999
2894 9204
2998 9999
2998 1422
213E 2121
413E 9999
P97F 4949
497E 4949
417F 9999
291C 9898
2494 9494
4241 09999

2998 3E49
7294 9819
4639 9999
2998 1919
2494 94949
1422 4199

281C
2745
2999
1919
2408
29909

2809
29924
GAG9
2700
1819
1919
2990
2999

2999 7F99
1818 9999
993E 4143
2808 9808
297F 9999
2992 DG6OA
497E 9191
413E 99909
P93E 4141
413F 9101
1818 9999
2999 9294
P97F OI7F
2819 2099
PO3E 4149
417F 4141
217E 9999
997E 2121
497E 4949
49498 9999
2641 4141
2808 9808
441C 9999
2949 4949

2009
2001

4549
P83E
BI3E
1222
413E
BB7F
413E
413E
2000
2819
2900
PB3E
4064E
4141

BI3E
2121

407F
BB7F
417F
#81C
8941

4949

2999
2102
5161
29909
4101

7F92
2999
2181

4141

29909
29909
2919
2999
4191
5151
2999
4149
2121
2999
4949
4141
2909
4244
4949

2999
247E
493E
2990C
2999
1998
2999
2908
2918
2999
2408
413E
PO3E
219E
2202
P9I3E
2294
413E
2999
2918
2804
2990
2204
493E
PO7E
4949
217E
P97F
4341
4141
2994
4879
497F

32Co:
32D9:
32E09:
32F9:
3399:
3319:
3329:
3339:
3349:
3359:
3369:
3379:
3385
3399:
33A0:
33BO2:
33Ca:
33Dg:
33ES:
33F9g:
3499:
3419:
3429:
3439:
3449:
3459:
3469:
3479:
3489:
3499:
34A0:
34B9:
34C@o:
34D9:
34EQ:

2999
4161

4141

2990
4141

2101

2999
4141

4955
2999
2102
2929
23905
1C2A
7F20
2999
4949
4949
2999
2898
4242
2999
2992
4844
29909
29909
4242
4949
29909
3C9o2
2999
2999
4149
2999
2999

2941
5149
413E
PI3E
417E
413E
2941
4141
6341
2041
2498
293C
B83C
4998
1998
2990
7C4a2
423C
2990
281E
423E
2999
2996
4242
2999
S5C62
423C
4999
4C52
927C
2990
4242
4977
2999
7EQ2

6355
4543
2900
4141
4844

29900
4141

4122
2999
4141

1929
2999
2405
2898
2999
2999
4242
2999
2999
2808
9242
1999
2202
2999
29909
4242
2999
29909
6949
2999
2999
4242
2999
2999
2418

4941
4141
P97E
4141
4241
PO7F
4141
1498
2941
2214
497F
2949
2485
2898
2999
3C92
427C
2902
7CA44
2808
3C4a9
3919
9202
29919
7749
4242
2999
3C42
4949
2998
4242
2418
2999
4242
207E

4141
2999
4141
4945
2990
72898
4141
2999
4122
2898
2999
4929
o494
2899

4141
PI3E
417E
423D
PO3E
2898
413E
2941
1498
28098
#93C
1998
243C
29909

2999
4141
4949
<1117
4149
2808
2999
4141
1422
2990
2020
2492
[5555
2998

24l
4141
4949
PO7E
493E
2808
2941
4141
4141
P97F
2929
2191
2808
1929

3E42
2999
2202
7C49
2990
4949
1910
9242
1910
4941
2999
2999
4242
2999
2808
4242
2990
2999
4242
2999

2990
423C
2999
3E42
497C
2999
7C4a2
197C
3C49
1919
4141

2990
7C42
423E
29990
3EZ8
463A
2999
4224
423E
2999

2999
2999
4242
2999
2909
4242
2909
4944
1910
2999
29909
4242
9292
2999
2898
2999
2999
1818
2242
29990

2949
3C4a2
423E
299A
3C42
4242
2999
4879
1919
2999
3C42
427C
2399
3E49
A4
2990
4141
2442
3Co9

19 REM TRACK RACER BY D.C.
CORINDA, BRISBANE, 4975

ST.

¥#¥3% TRACK RACER

F3

HITACHI PEACH

KELLY,29 RUTH

29 WIDTH49:INPUT"DO YOU WANT DIRECTIONS
(Y/N) "; DR%: IFDR%="Y"THEN229
39 RANDOMIZE (PEEK (&HFFEQZ) ¥255+PEEK (&HFFE
9)) :Z2=20:B%=CHR%(254) : D$=CHR% (94) : S$=CHR
S(P2):TIMES="900:90:80":SCREEN S:WIDTH49
49 FORY=8T024

8€ 39Vd

08-CHIIN

(€861 Y3AW3O3A/Y3IBWIAON) ¥ ON ¥ INNTOA

59 PRINTTAB(15)B%; :PRINTTAB(25)B%

68 NEXT

79 X1=INT (RND¥9+1)+15

89 PRINTTAB(15)B%; :PRINTTAB(X1)D%} :PRINT
TAB(25) B$

99 X=POS(@):Y=CSRLIN

199 LOCATEZ,11:PRINT" *

119 K$=INKEY$: IFK®%=""THEN149

120 IFASC ¢K$) =2BTHENZ=Z+1

130 IFASC(K$)=29THENZ=Z~-1

148 IF SCREEN(Z,12)<>32THEN 180

150 LOCATEZ, 12:PRINTS®:LOCATED ,#:PRINTTI
ME

160 LOCATEX,Y

179 GOTO79

180 LOCATES,9:BEEP(1):PRINT"CRASHED INS
=PLAY AGAIN DEL=FINISH":PRINT"TIME=";TI
ME

199 KE=INKEY%: IFK$=""THEN198ELSEIFASC (K%
)=18THENCLS:RUN

209 IF ASC(K$)=8THENCLS:END

219 GOTO199

220 PRINTTAB(14) "TRACK RACER":PRINT*"The
object is to steer a car (";CHR%(%92);")
for as long as possible,without hi
tting any obstacles,or going off the tr
ack.You control it with the left and ri
ght arrows of the cursor control keys."®:
FORI=1TO9990

239 NEXTI:GOTO39

*A%A L2/716K AUSTRALIA’S CUP (AUSCUP/DAT) 3¢

TRS-88/SYSTEM-89

1 REM FHEHOHOOE RIS

¥* AUSCUP/DAT *

FEHEI0OHEHEHHEEE
2 CLS:CLEAR3999:DEFINTT:DBIMAS(13) :REM
DELETE THIS LINE BEFORE TYPING IN THE REST OF THE PROGRAM!''!
13598 ACH="123456789 123456789 123456789 123456789 123456789
56789 123456789 123456789 12345*
1360 TE(1)="12X456789 123456789 12345678% 123456789 123~
13790 TE(2)="123456789 123456789 123456789 123456789 123"
13890 TE(3)="123456789 123456787 123456789 123456789 123"
1399 SR$="123456789 123456789 123456789 123456789 123456789
56789 123456789 123456789 "
1498 RR$="123456789 123456789 123456789 123456789 123456789
56789 123456789 123456789 *
1419 CS$="123456789 123456789 123456789 123456789 123456789
56789 123456789 123456789 "

1234

1234

1234

1234

1429 SL$="123456789 123456789 123456789 123456789 123456789 1234
56789 123456789 123456789 *

1438 RL$="123456789 123456789 123456789 123456789 123456789 1234
56789 123456789 123456789 *

1448 A$(1)="123456789 123456789 123456789 123456789 123456789 *~

1450 A%$(2)="123456789 123456789 123456789 123456789 123456789 *

1460 A$(3)="123456789 123456789 123456789 123456789 123456789 *

1470 A%$(4)="123456789 123456789 123456789 123456789 123456789 *

1488 A%$(5)="123456789 123456789 123456789 123456789 123456789 *

1498 AS(6)="123456789 123456789 123456789 123456789 123456789 *

1588 A%$(7)="123456789 123456789 123456789 123456789 123456789 *

1510 A$(8)="123456789 123456789 123456789 123456789 123456789 °

1520 A$(9)="123456789 123456789 123456789 123456789 123456789 *

1538 A$(18)="123456789 123456789 123456789 123456789 123456789 *
1540 A$(11)="123456789 123456789 123456789 123456789 123456789 *~
1550 A$(12)="123456789 123456789 123456789 123456789 123456789 *
1560 A$(13)="123456789 123456789 123456789 123456789 123456789 *
S@60 PRINTCHRS (23)

5816 AC=PEEK (VARPTR (AC$) +2) ¥256+PEEK (VARPTR (AC$) +1) :FORT=6T084: G
OSUBS399: POKEAC+T , X: NEXT

59206 DATA160,191,191,191,143,191,191,191,144,26,24,24,24,24,24,2
4,24,24,24,165,138,191,149,179,176,191, 133, 154,26, 24,24,24,24,24
,24,24,24,24,32,131,139,191,191,191, 135,131, 32,26, 24,24,24, 24,24
,24,24,24,24,32,32,32,162,191,145,32,32,32

5936 DATA26,24,24,24,24,24,24,24,24,24,32,131,131,131,131,131,13
1,131,32

5648 T1=PEEK(VARPTR(TS$ (1)) +2)%¥256+PEEK (VARPTR(T$ (1)) +1) : FORT=8TO
42:GOSUBS5399:POKET1+T, X:NEXT

5059 T2=PEEK (VARPTR(T®(2)) +2) ¥256+PEEK (VARPTR(T$(2)) +1) :FORT=6TO
42: GOSUBS5399: POKET2+T, X:NEXT: T3=PEEK (VARPTR (T$ (3)) +2) ¥256&+PEEK (V
ARPTR (TS (3)) +1) :FORT=AT042: GOSUBS398: POKET3+T, X:NEXT

5649 DATA152,137,144,149,32,149,159,131,132,131,151,129,151,131,
148,152,137,144,149,32,32,131,151,129,152,137,144,134,129,150,13
1,132,32,32,168,131,137,1706,32,170,178,131, 169

5676 DATA151,131,149,149,32,149,146,131,148,32,149,32,151,167,32
,151,131,149,149,32,32,32,149,32,151,131,149,32,32,146,131,148,3
2,32,i78,32,168,178,32,176, 178,131, 127

S¢86 DATA129,32,129,1398,131,32,139,131,32,32,129,32,129,32,129, 1
29,32,129,131,131,129,131,131,129,129,32,129,32,32,130,131,32,32
,32,32,.31,129,32,131, 129,139, 32,32

5898 SR=PEEK (VARPTR(SR$) +2) #2546 +PEEK (VARPTR (SR$) + 1) : FORT=0T079: G
0SUBS398: POKESR+T , X :NEXT

5199 DATA32,32,32, 160,199, 170,168,144,32,32,32,26,24,24,24,24,24
,24,24,24,24,24,24,32,32,184,191,191,1798,1798,191,180,32,32,26,24
»24,24,24,24,24,24,24,24,24,24,32,178,179,179,179,186,178,179,17
9,177,32,26,24,24,24,24,24,24,24,24,24,24,24

5119 DATA32,32,131,131,131,131,131,131,131,32,32

5126 RR=PEEK (VARPTR (RR$) +2) ¥256+PEEK (VARPTR (RR$) +1) : FORT=6T079: 6
0SUBS399 : POKERR+T, X:NEXT

5139 DATA32,32,32,32,1640,199,144,32,32,32,32,26,24,24,24,24,24,2
4,24,24,24,24,24,32,32,32,32,199,191, 189, 32,32, 32,32, 26,24,24,24
,24,24,24,24,24,24,24,24,32,32,32,178,179,187,179,177,32,32,32,2
6,24,24,24,24,24,24,24,24,24,24,24

5149 DATA32,32,32,1390,131,131,131, 129, 32,32, 32

—— erw rwn w w — . - - e

(€861 Y38W303A/Y3IGW3AON) ¥ ON ¥ IWNTOA

08-0OHIIW

6€ 39Vd

5150 CS=PEEK (VARPTR(CS%) +2) ¥256+PEEK (VARPTR (CS%) +1) : FORT=8T079: 6
0SUBS398: POKECS+T, X: NEXT

5149 DATA32,32,32,32,32,170,32,32,32,32,32,26,24,24,24,24,24,24,
24,24,24,24,24,32,32,32,32,32,170,32,32,32,32,32,26,24,24,24,24,
24,24,24,24,24,24,24,32,32,32,32,160,186,176,32,32,32,32,26,24, 2
4,24,24,24,24,24,24,24,24,24

5176 DATA32,32,32,32,32,131,129,32,32,32,32

5180 SL=PEEK(VARPTR(SL%)+2) ¥256+PEEK (VARPTR(SL%) +1) :FORT=8T079: 6
OSUBS398: POKESL+T,X:NEXT

5196 DATA32,32,32,184,1798,170,180,32,32,32,32,26, 24,24,24,24,24,
24,24,24,24,24,24,32,160,1906,191,1798,176,191,189,144,32,32,26,24
,24,24,24,24,24,24,24,24,24,24,160,179,179,179,186,178,179,179,1
79,144,32,26,24,24,24,24,24,24,24,24,24,24,24

5200 DATA32, 139,131,131,131,131,131,131,129,32,32

5219 RL=PEEK (VARPTR(RL%) +2) ¥256+PEEK (VARPTR (RL%) +1) :FORT=9T079: G
0SUBS53998: POKERL +T , X: NEXT

5228 DATA32,32,32,32,32,186,1806,32,32,32,32,26,24,24,24,24,24,24
,24,24,24,24,24,32,32,32,32,168,191,191, 148,32,32,32,26,24, 24,24
,24,24,24,24,24,24,24,24,32,32,32,160,179,187,179,179,144,32,32,
26,24,24,24,24,24,24,24,24,24,24,24

5239 DATA32,32,32,32,131,131,131,131,32,32,32

5249 FORG=1T013:AA=PEEK (VARPTR (A% (G)) +2) ¥256+PEEK (VARPTR (A% (G)) +
1) :FORT=9T049: GOSUB5390 : POKEAA+T, X: NEXTT :NEXTG

5258 DATA32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,3
2,32,32,32,32,32,32,32,32,160,176,176,176,32,32,32,32,32,32,32, 1
69,148,32,32,32,32,32,32,32,32,32,32

5260 DATA32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,3
2,32,32,176,176,32,160,199,191,191,191,191,191,191,32,32,32,32,3
2,1608,191,191, 189,144,32,32,32,32,32,32,32,32

5276 DATA32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32, 160, 144
,176,188,191,191,191,183,191,191,78,84,191,191,191,191, 189,156, 1
76,176,160,186,191,191,191,191,144,32,32,32,32,32,32,32

5280 DATA32,32,32,32,32,32,32,32,32,32,32,32,32,176,176,188,191,
191,191,191,191,191,191,157,191,191,191,191,191,191,191,191, 191,
149,191,191,191,191,191,191,191,191,191, 188, 144,32,32,32,32,32
52906 DATA32,32,32,32,32,32,32,32,32,184,188,191,191,191,191, 191,
191,191,191,191,191,191,191,183,191,191,191,191,191,191,191, 191,
191,149,191,191,191,191,81,76,68,191,191,191, 191, 188, 180, 144,32,
32

5399 DATA32,32,32,32,32,32,32,32,189,191,191,191,191,191,191,191
,191,191,191,191,191,191,191,157,159,159,159, 159,159,159, 159, 159
,159,149,159,159,191,191,191,191,191,191,191,191,191,191,191, 189
,176,32

5316 DATA32,32,32,32,32,32,32,136,178,191,191,191,191,87,65,191,
191,191,191,191,191,191,191,183,191,191,191,83,65,191,191,191, 19
1,191,191,157,159,159,159,159, 159, 159, 159,159, 159, 159,159,159,15
9,191

5326 DATA32,32,32,32,32,32,32,32,130,175,191,191,191,191,191,191
,191,191,191,191,191,191,191,157,191,191,191,191,191,191,191,191
,191,191,191,183,191,191, 191,191,191, 191, 78,83,87, 191,191,191, 19
1,151

5339 DATA3Z2,32,32,32,32,32,32,32,32,32,1306,175,191,191,191,191,1
91,191,191,191,143,143,135,131,131,32,32,136,131,131,143,191, 135
,187,191,157,187,187,187,187,159,159,159,191,191,191,191,191,135
,32

53406 DATA32,32,32,32,32,32,32,32,32,32,32,138,191, 191,159,143, 13
1,129,32,32,32,32,32,32,32,32,32,32,32,32,32,32, 130, 139, 129, 157,
191,191,191,86,73,67,191, 189, 189,143,131, 129,32,32

5356 DATA32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,3
2,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,131,131,1%1
,143,175,191,191,143,135,32,32,32,32,32

53606 DATA3Z2,32,32,32,32,32,32, 32, 32, 32,32,32,32,32, 32,32,32,32,3
2,32, 13
8, 188, 188, 132,84, 65,83,32,32,32, 32

5376 DATA32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,3
2,32,32,32,32,32,32,32,32,32,32,32,32,32,32, 32,32, 32,32,32,32,32
,131,129,32,32,32,32,32,32,32,32

5380 DELETES@@8-54390

5398 READX

5408 V=V+1:IFV<16THENPRINT@410, * * 5 :RETURN

5416 IFV>=18ANDV<=28THENPRINT@419, "Standby'";

5420 IFV>20THENV=0

5438 RETURN

AXX L2/16K AUSTRALIA’S CUP (AUSCUP/LST) ¥¥¥¥

19 0UT254,9:CLEARAGI:DIMA% (13) : GOSUB1918:CLS:PRINTTAB(15)"T h e
Australia’™s C u p":PRINTSTRING%(64,149)

20 MS$="How many are playing ?":PP=192:SL=1:G0SUB929:1FVAL (@Q%) <

10RVAL (Q@@%) >6THEN29

39 NP=VAL (@Q%) :CLS:PRINT"Player’s names are now required. ":PRINT

STRING$ (64, 140) :PP=192:FORZ=1TONP:MS$="Player "+STR$%(Z)+", pleas

e enter name ?":SL=10:G0SUB?20:PN% (Z)=00%:PP=PP+64:NEXTZ

49 CLS:PRINT"Please place bets ! (Max: %109)":PRINTSTRING% (64,14

P) :GOSUB1589:PRINT"Defending yacht is ";DF&%;" at ";DO%:PRINT"Cha

l1lenging yacht is "j;CH%;" at ";CO%:PRINT

59 PP=384:FORZ=1TONP:MS%$=PN%(Z)+", please make your bet ?":SL=3:

GOSUB920:PB (Z)=VAL (@Q%) : GOSUB1819:PP=PP+64:NEXTZ

69 PRINT@384,CHR%(31)

79 PP=384:FORZ=1TONP:MS$=PN%(Z)+", who do you bet on, C or D ?":

SL=1:GOSUB?29: IFQA@%="C"0RAA%="c"0RAAQ%="D"0ORAQA%*="D"THENPBS (2} =uw$

:PP=PP+64:NEXTZELSEZ=Z-1:NEXTZ

89 PRINT@832, "The challenging yacht comes from ";CN%;CHR$(31);

99 PRINT@979, "Press any key for the first race!";:FORT=1T05999

199 IFPEEK (15359)=8THENNEXT : RUN

119 RN=9

120 RANDOM: DS=259:CS=579:DD=1:CD=1:CL=9:DL=0:CT=0:DT=0:MN=9: SE=0

139 RN=RN+1

149 0OUT254,116:CLS:PRINT@F, "Race "jRN;“ - Between ";DF%;" and *;

CHs$

159 PRINT@266,SR%; :PRINTR266+89,DF%; : PRINT@S586, SR%; : PRINT@S586+89

» CH%; :FORG=1TO0809: NEXTG: PRINTR64,CHR%(31); :FORT=1TOS59: PRINTERND (

896) +64, " . " ; :NEXT

160 PRINT@DS, SR%; : PRINT@CS, SR%;

175 ONRND{Z GOSUB375, 366

189 IFCL=5STHENS39ELSEIFDL=STHEN&30

Ov 39Vvd

08-0OHIIN

(€861 Y3AW3D3A/YIEWIAON) ¥ ON ¥ INNTOA

199 IFCT>DTTHENPRINTR@Z, "The Challenger "j;CHR%(34);CH$;CHR%(34); "
leads. " ; CHR%(39) ;

299 IFDT>CTTHENPRINT@Z, "The Defender ";CHR%(34);DF$;CHR$(34);" 1

eads. ";CHR%(33) ;

218 GOTO179

229 GOTO0229

239 IFDS>=305STHEN2SAELSEDS=DS+DD

249 PRINTE@DS, SR%; : RETURN

259 DC=DC+1:IFDC=1THENPRINTE@DS,RR%; : RETURN

269 IFDC=2THENPRINTEDS,CS%; : RETURN

279 IFDC=3THENPRINTEDS,RL%; : RETURN

280 IFDC=4THENDC=8:PRINT@DS,SL%; :DD=-1:DL=DL+1

299 RETURN

399 IFDS<=26FTHEN320ELSEDS=DS+DD

319 PRINTEDS, SL%; :RETURN

320 DC=DC+1:IFDC=1THENPRINTE@DS,RL%; : RETURN

339 IFDC=2THENPRINTEDS, CS%; : RETURN

349 IFDC=3THENPRINTEDS,RR%; : RETURN

359 IFDC=4THENDC=@:PRINTE@DS,SR%; :DD=1:DL=DL +1

369 RETURN

379 DT=DT+1:IFDD=1THEN239ELSE399

389 CT=CT+1:IFCD=1THEN399ELSE469

399 IFCS>=625THEN419ELSECS=CS+CD

499 PRINTECS, SR%; : RETURN

419 CC=CC+1:IFCC=1THENPRINTRCS,RR%; :RETURN

429 IFCC=2THENPRINTECS,CS%; :RETURN

439 IFCC=3THENPRINTRCS,RL%; :RETURN

449 IFCC=4THENCC=@:PRINTECS,SL%; :CD=-1:CL=CL+1

459 RETURN

469 IFCS<=58CTHEN48JELSECS=CS+CD

479 PRINTECS, SL%; : RETURN

484 CC=CC+1:IFCC=1THENPRINTECS,RL%; : RETURN

499 IFCC=2THENPRINTRCS,CS%; :RETURN

599 1IFCC=3THENPRINTECS,RR%; : RETURN

519 IFCC=4THENCC=9:PRINT@CS,SR%; :CD=1:CL=CL+1

529 RETURN

539 FORG=1TO0699:NEXTG:CLS:0UT254,0:PRINT"The Challenging ship "j

CH%;* from ";CN%; " has won'*

549 PRINT:PRINT

SS9 CT=(CT-DT)¥6:MN=INT(CT/69) :SE=CT- (MNX*69)

569 PRINT"The Challenger won by "iMN;* minutes & ®;SE;j;" seconds.

579 PRINT

589 CW=CW+1:IFCW>=4THENZ49

599 PRINT*"The tally so far is:":PRINT"--—--~——-————-—-~—~=~—— "

689 PRINT"Challenger has won ";CW

619 PRINT"Defenaer has won ";DW

629 PRINT:PRINT: INPUT"Press <ENTER)> to start the next race";2Z2Z2%:
G0TO0129

639 FORG=1T069F:NEXTG:CLS:0UT254,9:PRINT"The Defending ship “;DF
%5 won'!!''*®

649 PRINT:PRINT"Australia will be celebrating '!"

650 PRINT:PRINT

660 DT=(DT-CT)#6:MN=INT(DT/69) : SE=DT- (MN¥69)

679 PRINT®" The Defender won by "iMN;" minutes & ";SE; " seconds.”

689 PRINT

6929 DW=DW+1 : IFDW>=4THEN?S59

789 PRINT"The tally so far isI"IPRINT"~—--——crmmmueme—n u

710 PRINT"Defender has won ";DW

729 PRINT"Challenger has won ";CW

739 PRINT:PRINT:INPUT"Press <(ENTER> to start the next race";ZZs%:
GOTO129

740 FORG=1TO880:NEXTG:WI$=CH$:G0OT0769

759 FORG=1TO899:NEXTG:WI%$=DF%

768 CLS:PRINT"The Australia’s cup has come to an end !'!'"

779 PRINT:PRINT"The winning yacht was ";WI%;*" from ";

789 IFWI$=DF$THENPRINT"Australia !“ELSEPRINTCNS$

799 PRINT

899 IFWI$=DF$THENPRINT"Australia has defended the cup yet again
't "ELSEPRINTCNS$; " has won the cup from Australia !!"

819 PRINTES12,*" “5ACH:PRINTRS12+39+64,"";

829 IFWI$=DF$THENPRINT"<~-- Australia’s Cup®"jELSEPRINT"<{-- "j;CN%;
"’s Cup”;

839 PRINT@896, " "; : INPUT"Press <(ENTER)> to see betting results”;ZZ
%

849 IFWIS=DFSTHENX$="D":XX$%="d":XV=DVELSEX$="C":XX$%="c":XV=CV
8509 FORZ=1TONP:IFPB%(Z)=X$0RPB% (Z)=XX$THENPB{Z)=PB(Z)¥XV:Z%(Z)="
WwOn“ELSEPB(Z)=0:Z2%(Z)="1lost"

860 NEXTZ

879 CLS:PRINT"The betting results for all players are below.":PR
INTSTRINGS (64,149);

889 FORZ=1TONP:PRINTPN%(Z);" has “;2%(2);

899 IFPB(Z)=8THENPRINT® !®"ELSEPRINT" "“;PB(2Z2)

999 NEXTZ:PRINTSTRING$(64,149)

919 MS$="Press <ENTER> for another Australia’s Cup":PP=969:SL=1:
GOSUB?2d: RUN

920 QQ%="":PRINTE@PP,MS%;" ";

939 FORT=1TOSL:PRINTCHR$(95) ; :NEXT:FORT=1TOSL:PRINTCHR%(24) ; :NEX
T

249 ASE=INKEY®$

959 IFAS$=""THEN?49

969 IFAS$=CHR$ (8) ANDLEN (Q8%) =9THEN949

979 QQ%=0Q%+ASH: IFASE=CHR$ (13) THENQAQ$=LEFT$(QQ%,LEN(QQ%)~1) :RETU
RN

9280 PRINTASS; : IFAS$=CHR%$ (8) THENQQ$=LEFT$(@Q%,LEN(QQ%) -2) :PRINTCH
R%(95) ;CHR%(24) ; : GOTO949

9299 IFLEN(QQ%$)=SLTHENRETURN

1999 GOTO?49

1919 GOTO1359

1929 CLS:FORT=1TO3:PRINT" “5THE(T) INEXT:FORT=1TO12:PRINT
- "S5AS(T) INEXT:PRINT" "A%(13);

1939 PRINTEZ69, “You -=->";:PRINT@833, “are"; :PRINTE@896, "here'";
1949 FORH=1TO025

1959 PRINTE?789, “X";

1960 FORG=1TO99:NEXTG

1979 PRINT@?88," *;

1989 FORG=1T099:NEXTG

1999 IFINKEY$=""THENNEXT:GOTO1880dELSE11069

1199 CLS:MS$="Do you require 1nstructions ?":PP=512:5L=1:6G0SUB%2
g:IFAQ%="N"0RAA%="n"THENRETURN

(€861 Y38W3D30/43BWIAON) ¥ ON ¥ 3WNTOA

08-0HIIW

L¥ 39vd

1119 CLS:PRINT* W e l come to t he *“;CHR$(34)j" A US T
RALIA’S CUP ";CHR%(34):PRINTSTRINGS(64,149);

1120 PRINT"On the 26th of September 1983, the America’s Cup was
lost by theAmerican yacht ’'Liberty’ to the Australian yacht ’Aus
tralia I1I°"

1139 PRINT"This day will go down in history because a 132 year w
inning streak finally came to an end. The people of Australi
a rejoiced in Australia II’'s triumph and celebrated the win for

many days (and nights) after the glorious event."

1149 PRINT"The America’s cup (affectionately known as The Auld M
ug) was transported to Australia and to the Royal Perth Yacht
Club whereit was gazed upon in wonder by all."

1150 PRINT"The Auld Mug’s previous home had been the New York Ya

cht Club which was renowned for its sly and devious tactics us

ed to stop the cup from leaving their shores.":PRINTSTRING$(64,1

49) ;

1169 PRINT@?979, "Press any key to continue®;

1179 IFPEEK(15359)=0THEN1179

1180 CLS:PRINT" T h e AUSTRALIA"’*S cu

p-

1198 PRINTSTRING®{(64,148);

1209 PRINT"The New York Yacht Club could not defeat Australia II
neither on shore or off and had to surrender the cup to syndi

cate head Alan Bond and the Australian crew."”

1219 PRINT"Australia II owed much of its success to the controve

rsial 'Winged Keel’ as well as its sturdy management.”
1220 PRINT"The Australian Yacht earned a good reputation as well
as a few nicknames - One of these being 'The wonder from Down

Under’."

1239 PRINT:PRINT"It is now some time after that glorious day and
you must defend the Australia’s Cup. Australia II will not be c
ompeting as it isnow in a museum, stuffed, along with other spor
ting greats such as Dennis Lillee & Robert de Castella."

1249 PRINTSTRING®%(64,149); :PRINT@979, “Press any key to continue"®

¥

1259 IFPEEK(15359)=8THEN1259

1260 CLS:PRINT" T h e AUSTRALIA'™S cu
P":PRINTSTRING% (64, 149) ;

1279 PRINT"The challengers for this years cup were from the Unit
ed States, England and New Zealand. The Australian trials have a
lready beenheld to decide the defender and the challengers have

all competed to decide the challenger.”

1280 PRINT"The Australias Cup will be awarded to the yacht that
wins the best of seven races to be held in the forthcoming wee
K.®

1299 PRINTSTRING%(64,149);

1399 PRINT"Up to 6 people can bet on the outcome of the seven ra

ces. The names of the Challenging and Defending yachts will be
displayed along with the odds for each.”

1319 PRINT:PRINT"Australia’s Cup (C) 16/83 by Carl Cranstone. Al
1 Rights Reserved”;

1320 PRINT@979, "Press any key to start.";

1339 IFPEEK(15359)=6THEN1339

1349 RETURN

1359 " 33300 XXX 33 3R 3333 H O3 6 Xt

1360 %

1376 ' %

1380 "%

1399 ' %

1499 "% THESE LINES WILL CONTAIN THE GRAPHIC STRINGS
1410 "%

1420 %

1439 "%

14496 %

1459 ' *

1469 '*

1479 "%

1489 %

1499 ' %

1599 %

1519 %

1520 "%

1539 "%

1549 "%

1559 "%

1560 7 ¥HKEEEXRH X IO KX 00K 3OO OOOO0RHOE

1579 GOTO01929

1589 RESTORE:FORT=1T01999:READS$: IFS$<>“AUSSIE" THENNEXTT

1599 FORT=1TORND(19) : READS%:NEXT: DF$=S$:FORT=1T01909:READSS: IFS%
<>"THEM" THENNEXTT

1699 U=RND(39) :FORT=1TOU:READS%:NEXT: CH$=S%

1619 IFU<C=18THENCN$="America"”

1629 IFU>10ANDUC=28THENCN$="England"

1639 IFU)>20ANDUC=3FTHENCN$="New Zealand"

1649 X=RND (7) :ONXGOTO01659, 1669, 1679, 1689,1699,1790,1710

1659 DO$="2/1":DV=2:G0TO01729

1668 DO$="5/1":DV=5:6G0T01729

1679 DO$="16/1":DV=106:G0T01729

1689 DO%$="20/1":DV=206:G0OTO01729

1699 DO%$="49/1":DV=40:GOT01729

17969 DO%$="56/1":DV=59:G0T01729

1719 DO$="106/1":DV=100:G0T01729

1728 X=RND(7) :ONXGOTO1739,17490,17596,17690,1779, 1789, 1799

1730 CO$="2/1":CV=2:G0T01899

17490 CO$="5/1":CV=5:G0T01899

1750 CO$="16/1":CV=190:G0T01899

1760 CO%$="206/1":CV=20:G0TO01899

1779 CO%$="49/1":CV=49:G0T01899

1789 CO%$="59/1":CV=50:G0TO1809

1799 CO$="1096/1":CV=100:6G0T01899

1869 RETURN

1819 IFPB(2Z) >=9ANDPB(2Z) (=189THENRETURN

1820 PP=PP-64:PRINT@?60, "Sorry ";PN%(Z);", but you’'re bet is ill
egal!!"; :PRINT@PP+64,CHR%(39); :PB(2)=0:2=2Z-1:RETURN

1839 RETURN

1849 DATA"AUSSIE",Australia III,Down Under,Kangaroo I,Kangaroo I
I,Koala I,Emu II,Aussie Crawl,Kookaburra I,Advance II,Wallaby I
1859 DATA"THEM",Yankee 1I,Yankee II,Liberty,Stars n’ Stripes,Newp
ort,Yankee Doodle,Boston Strangler,Lost Angeles,Apple Pie,Titani
cI

ok ok d ok ok d ok ok dk d ok d ok ok kK Xk Xk X

2v 39Vd

08-0dHIIN

(e861 438W3D3Q/H3GNIAON) ¥ ON ¥ IWNTOA

1869 DATAUnion Jack,Royal I,Britannia II,Victorious,Unsinkable,B 79 DATA 149, 149, 32, 149, 139, 131, 32, 149, 32, 149, 165, 169,
odyline '32,Victory '83,Britain I,Britain II,England III 133, 32, 129, 32, 149, 32, 149, 149, 148, 149, 131, 131, 129, 1
1879 DATAKiwi I,Kiwi II,Auckland I,Wellington II,New Zealand I,1 65, 169, 133, 152, 137, 144, 129, 32, 129, 149, 32, 149, 139, 15
ntrepid II,Restless Native,N.Z. Challenge,KeelHaul,Deadly Weopon g, 32, 32, 129, 32, 131, 163
1889 0UT254,116:DS=259:CS=579:DD=1:CD=1:CLS:PRINT@Q, " Australi 89 DATA 133, 152, 129, 32, 131, 131, 129, 32, 32, 32, 32, 32, 32
a’'s Cup (c) 1983 by Carl Cranstone %% Demo Mode ¥X%":PRINTSTRING$ s 32, 32, 32, 134, 163, 132, 32, 133, 32, 32, 129, 32, 32, 149,
(64, 131); ‘ 32, 32, 133, 32, 32, 129, 32, 32, 32, 32, 32, 32, 32, 32, 131, 3
1899 DE®=" 2, 32, 32, 32, 32, 149, 32, 32
¥% Australia’s Cup ¥¥ - ¥ Press <(ENTER)> to start Xx* 99 DATA 131, 32, 32, 32, 32, 32, 149, 32, 32, 139, 32, 32, 32, 3
- %% For up to six players *¥ 2, 32, 32, 32, 32, 139, 32, 136, 149, 32, 32, 149, 32, 139, 131,
" 32, 134, 131, 148, 152, 131, 32, 131, 131, 129, 134, 131, 148,
1999 FORT=1TO059:PRINT@RND(832)+128, "."; :NEXT . 144, 131, 148, 139, 131, 32, 169
1919 X=RND(2) : ONXGOSUB379, 389 196 DATA 174, 32, 141, 174, 132, 32, 139, 32, 183, 179, 129, 144
19290 IFPEEK(15359)<>8THENRUN s 32, 149, 1394, 131, 32, 152, 131, 129, 151, 131, 148, 139, 131,
1939 22=2Z+1:1IFZZ>=LEN(DE%) THENZZ=QELSEPRINT@969,MIDS(DES, 22Z,62) 32, 131, 163, 133, 32, 149, 32, 32, 129, 32, 159, 131, 148, 159
:GOT01919 , 131, 148, 139, 131, 32, 159
1949 V=V+1:1FV=2THENRUNELSE1919 116 DATA 131, 148, 139, 163, 133, 131, 129, 32, 159, 163, 148, 1

57, 129, 149, 136, 131, 32, 184, 184, 144, 174, 174, 132, 128, 1

I L2716K AUSTRALIA'S CUP (AUSCUP/LNW) 33636% 1
28, 128, 164, 181, 132, 155, 159, 145, 128, 129, 128, 156, 157,

16 MODE2:0UT254,116:PCLSS:FLS 132, 179, 183, 149, 128, 129, 32
20 COLOR4:LINE@,@,159,1i,SET, BF

39 COLOR2:LINEY, 48,159,79,SET, BF 3¢ 32K/DISK GRAFX 36

46 COLORi:LINE®,80,159,88,SET, BF

59 COLORG6:LINEY, 184,159, 139,SET, BF 16 CLS:CLEAR2668:READL :DIML (L), TH (L)

69 COLOR3:LINEQ, 140,159,147,SET, BF 20 FORX=1TOL:READL (X) :NEXT:FORX=1TOL:FORY=1TOL (X) : READC: T$ (X)=T%
76 COLOR7:LINE128,8,159,191,SET, BF (X) +CHR$ (C) : NEXTY, X

89 GOTO8Y 38 FORX=1TOL:PRINT@(X~-1) %64, TH(X); :NEXT

99 REM PSAVE“®"AUSCUP/GRF*" 49 DATA3,19,19,19

59 DATA150,131,132,32,151,131,148,32,152,137,144,32,151,131,129,
32,165,160,133,149,136,148,32,151,167,32,32,157,1498,149,32,151,1

29,32,32,152,137,144,1398,131,32,32,129,32,129,32
608 DATA129,32,129,32,129,32,32,32,129,32,129

¥k 32K/ DISK GRAFX INIT PROGRAM 36tk 79 PRINT@192,STRING$(64,131) :PRINT@168, "Beb Wilson Software®;
88 PRINT@256,CHR$(31)*One moment please”:CMD*F*",DELETE 16-79
TRS-89/SYSTEM-89 99 CLEARS®:CLEARMEM-85988:DEFINTA-2:DEFSTRW,P:GOT0218

199 AS=INKEY%: IFA$=""THEN199EL SERETURN
119 CP=FIX(Y/3)*64+FIX(X/2)+153690:RETURN

19 CLS:CLEAR3999:0PEN"0",1, "BIGLTRS" 128 SET (X,Y):FORZ=1T08: A=PEEK (14499) : B=PEEK (14368) : IFA=gANDB=9TH
20 FORX=1TO 414:READY:PRINT#1,Y;:NEXT:CLOSE: END ENNEXTZ:RESET (X,Y) :FORZ=1T08: A=PEEK (144060) : B=PEEK (14368) : IFA=0AN
36 DATA 152, 137, 144, 157, 149, 149, 129, 32, 129, 151, 131, 14 DB=9THENNEXTZ: GOSUB199: IFA=8THEN120EL SERETURN
8, 151, 131, 148, 131, 131, 32, 159, 131, 132, 149, 32, 144, 139 138 IFM=9THENSET (X, Y)ELSERESET (X, Y)

. 131, 32, 151, 131, 148, 149, 32, 149, 131, 131, 32, 151, 131, 149 GOSUB158:G0TO0129

129, 151, 131, 32, 131, 131, 129 156 IFAANDS8THENY=Y+(Y>@)%1:RETURN
44 DATA 151, 131, 129, 151, 129, 32, 129, 32, 32, 159, 131, 132, 160 IFAAND16THENY=Y-(Y<44) %1:RETURN

149, 136, 148, 139, 131, 32, 149, 32, 149, 151, 131, 149, 129, 178 1IF (AAND32) OR (BAND16) THENX=X+ (X>9) %1 :RETURN
32, 129, 139, 151, 32, 32, 149, 32, 139, 131, 32, 138, 131, 149, 188 IF(AANDG4)OR (BANDG64) THENX=X- (X< 127) %1 :RETURN

144, 32, 149, :39, 131, 32, 149 199 A$=INKEY%: IFA%=""THENA%=" *
58 DATA 152, 129, 151, 164, 32, 129, 32, 129, 149, 32, 32, 149, 208 A=INSTR("CDETX",A%): IFATHENRETURNELSEA=INSTR("cdetx",A%) :RET
32, 32, 131, 131, 129, 157, 152, 149, 149, 32, 149, 129, 32, 129 URN

, 181, 32, 149, 149, 137, 149, 129, 32, 129, 159, 131, 148, 149, 219 W1=CHR® (31) :W3="[

32, 149, 139, 131, 32, 151, 131 " +CHR® (98) +CHRE (BP) +*, . ":W2=W1+"GRAFX MODE : % % : use ARRO
68 DATA 148, 151, 131, 32, 129, 32, 32, 159, 131, 148, 149, 164, WS or ¢ > ESC CTRL"

149, 138, 131, 129, 151, 131, 148, 151, 167, 32, 129, 32, 129, 220 X&="ABCDEFGHIJKLMNOPGRSTUVWXYZ ?!.:;,1234567890#%%":X1%="abc
1s¢g, 131, 132, 146, 131, 148, 139, 131, 128, 131, 151, 129, 32, defghijklmnopgrstuvwxyz® :DIMTE(LEN(XS$) ,3) ,SS% (3360) ,6E(25) ,P (25)
149, 32, 32, 129, 32, 149, 32 ,U(15)

(£861 YIAN3OIW/HIBWIAON) ¥ ON ¥ INMTION

08-OCHIIW

€7 39vd

239 OPEN"1",1, "BIGLIRS":PRINT"Initiralizing HUGE letters®":FORX=1T
OLEN(X%) :FORY=1TO3:FORZ=1TO3: INPUTH#1,C:TH(X,Y)=TH(X,Y)+CHRE(C):N
EXTZ: :NEXTY, X:CLOSE

249 FORX=GTO15:READU(X) :NEXT:J=0:CLS:S$="S":FORSN%=1T07:G0OSUB799
TNEXT

2590 PRINT@969, "<C>lear <G>rafx {H>uge <(S)>ave <(R>ecall <P>ro
gram <E>nd"; :GOSUB199

260 S=INSTR("CGHPSRE", A%) : IFSTHENONSGOSUB399, 310,479, 620,770,789
, 839

279 S=INSTR("cghpsre”, A%) : ONSGOSUB399,319,479,620,779,780,839
289 GOT0259

299 ONAGOTO0329,369,379,389, 259

399 CLS:RETURN

319 X=0:Y=90

320 PRINT@969,USINGW2; "CURSOR" ;

339 GOSUB119:CH=PEEK(CP)

349 POKECP,32:SET(X,Y):FORZ=1T08:A=PEEK(14490) : B=PEEK(14368) : IFA
=fANDB=GTHENNEXTZ: POKECP, CH:FORZ=1T08: A=PEEK (14499) : B=PEEK (14368
) : IFA=FANDB=GTHENNEXTZ: GOSUB199: IFA=8THEN349EL SE299

359 POKECP,CH:GOSUB159:G0T0339

369 PRINT@?60,USINGW2; "DRAW"; :M=8: GOSUB128:SET (X, Y) : GOT0299

370 PRINT@969,USINGW2; "ERASE"; :M=1:GOSUB1298:G0T0299

389 PRINT@?60,W1"TEXT Mode : CENTER> to Exit";:GOSUB11¢9

399 CH=PEEK(CP) : POKECP, 149: FORZ=1TO19: A%=INKEY%: IFA%=""THENNEXT :
POKECP,CH:FORZ=1TO019: A$=INKEY%: IFA%=""THENNEXT: GOTO399

499 POKECP,CH:ONINSTR(W3,A%)G0T0439,449,459,460,459,469

419 IFA%$=CHR%(13) THEN420ELSEPOKECP,ASC (A%) :CP=CP+1:G0T0399

420 XY=CP-15369:Y=FIX(XY/64)*3+1:X=2%(XY-INT (XY/64)*64):60T0329
439 CP=CP+(CP>15423) ¥64:GOTO0399

449 CP=CP-(CP<16256) %¥64:G0T0399

459 CP=CP+(CP>15369)%1:GOT0399

469 CP=CP- (CP<16319)¥1:G0T0399

479 L=9:60T0589

489 GOSUBG&GPI: PRINTRA+64, "XXX"; : GOSUB199:S=INSTR(X%,A%) : IFSTHENSS
[

499 S=INSTR(X1%,A%) : IFSTHENSS59

599 S=INSTR(CHR% (13) +CHR%(98) +CHR%(24) +CHR%(91) , A%) : IFS=9THEN489
ELSEGOSUBS598: ONSGOT0519, 529,599,539

510 L=INT((L+16)/16)%*16-1:G0T0S569

520 L=L+(L>9)¥%1:6G0T0549

530 L=L+(L>15)%*16

549 S=27:G0SUB&PP: GOSUBL61P:GOTO489

559 GOSUB619

569 L=L+1:IFL<BFTHEN489

579 DEFUSR=VARPTR(U(@)) :J=USR(9) :PRINT@768,W1:L=L-16

589 PRINT@?60,W1"SHIFT/BACKSPACE to Exit";:G0TO0489

599 PRINTe@@+64," "3 :RETURN

699 @=INT(L/16) %192+ (L-INT(L/16)%16)%4:RETURN

619 FORY=1TO3:PRINT@E+(Y-1)%#64,TE(S,Y) ; iINEXT:RETURN

629 TL=P:C=15369:PRINTR?69,W1"Enter 1 letter to identify program

H
639 AF=INKEY%: IFA%=""THENG3IGELSES=ASC(A%) : IFS<6S50RS>P9THENG(39
649 FE="TITLE" +A%+"/GFX" :PRINT@969,W1"LOCATING END OF DATA"; :FOR
X=16319TOCSTEP-1

659 PRINT@988,X-Cj; : IF (PEEK(X) < >32ANDPEEK {X) < >128) THENGGBELSENEXT
X:PRINT@896,W1"Screen is empty : TRY AGAIN"; :FORD=1T0589:NEXT:GO
TO259

668 B=X-C:L=INT(B/64):R=B-L%64: IFR=THENR=64ELSEL=L+1

679 G=5:P(1)="1 CLS:CLEAR2899:READL:DIML (L) ,TH(L)"

680 P(2)="2 FORX=1TOL:READL (X) :NEXT:FORX=1TOL:FORY=1TOL (X) :READC
STHE(X)=TH(X) +CHRE (C) :NEXTY, X"

699 P(3)="3 FORX=1TOL:PRINT@(X-1)%64,TE(X); :NEXTX":P(4)="4 DATA"
+STRE(L):P(5)="5 DATA"

799 FORX=1TOL:SB=C+(X-1)%64:G%(X)="":POKEVARPTR(G%(X))+2, INT(SB/
256) : POKEVARPTR(G%(X)) +1,SB~-INT (SB/256) ¥256: POKEVARPTR(G%(X)), 64
:NEXT

719 PRINT@960,W1"Writing program”; :FORX=1TOL:PRINT@976,W1; X; :FOR
Y=64TO2STEP-1:PRINT@989, Y; : VE=MIDE$ (GH(X),Y, 1) : IFVE=CHRS (32) THENN
EXTY

720 POKEVARPTRI(G$(X)),Y:P(4)=P(4)+","+STR%(Y) :FORZ=1TOY:TL=TL+1:
PRINT@984 ,USING"#HH#H"; TL; :P(G)=P(G) +STR$E (ASC(MIDF(GH(X),Z,1)))+",
":IFLEN(P(G)) >220THENGOSUB769:G=G+1:P (G)=STR%(G)+" DATA"

739 NEXTZ,X:GOSUB769:K=6G:G6G=3:6G0SUB760:S%="5":SN%=7:GOSUB799

749 CLS:PRINT@256, "PROGRAM COMPLETE:

Program is : "K"lines Numbered 1 TO"K"
Graphics data : "TL"elements
Filespec : "F&

756 PRINT*®
DUMPING PROGRAM : ":0PEN"0",1,F%:FORX=1TOK:PRINT#1,P (X) :NEXT:CLOS
E:PRINT@960, "Hit any key"; :GOSUB18@:SN%=7:S%$="R":GOSUB799: GOT025
o

768 P(G)=LEFT$(P(G),LEN(P(G))-1):RETURN

778 PRINT@960,W1"Save as screen # <1-6>"; :GOSUB189:SNX=INSTR("12
3456, A%) : IFSNXTHENS$="S" : GOTO799ELSE7?79

780 PRINT@960,W1"Recall screen # <1-6>"; :GOSUB198:SN%=INSTR("123
456" ,A%) : IFSNXTHENS$="R"ELSE789

798 DEFUSR=VARPTR(U(8)):IFS$="S"THENU(9)=15368:U(11)=VARPTR (SS% (
(SN%-1) ¥486)) ELSEU(9) =VARPTR (SS% ((SN%-1) #480)) :U(11)=15368

808 J=USR (@) : RETURN

819 DATAB8448,15552,4352, 15360, 256,768, -206243, 201

820 DATAS8448,8,4352,0, 256,960, -20243, 201

830 CLS:CMD"DIR ©":END

¥ L2/716K LVAR UTILITY 3#%66%

TRS-89/SYSTEM-89

299091 ; ¥HLVAR=NAME %%
29902

29993 3 BY TIM FISH
29994 ; 9 CAVENDISH RD
299905 ; COLLIERS WOOD
29996 5 LONDON SW19 2ET
29907 ENGLAND

299908 3

¥ 39V

08-OHIIN

(€861 Y38W3D3Q/Y3IEW3AON) ¥ ON ¥ IWNTOA

99899
29109
299192
291064

299106
29198
29119
PH129
299122
99124
299126
99128
99139
99132
29134
99136
99138
29149
29142
99189
29209
99229
29249
P9269
299280
29388
99320
299349
PA3IECD
39389
23490
29429
29449
29469
2994806
29599
#9529
29549
29569
29589
9689
28620
29649
29669
29689
3799
29729
2997498
29769
2997806
29809
29820
29849
998605

INIT

START

NEXT

AGN

NOT15

INT

ORG
LD
LD

LD
LD
JP
LD
LD
cP
JR
CALL
OR
JR
LD
DEC
LD
PUSH
POP
LD
SBC
JR
INC
INC
LD
CALL
LD
CALL
DEC
LD
CALL
DEC
LD
LD
cpP
JR
LD
CALL
LD
CALL
INC
INC
INC
LD
LD
INC
LD
LD
LD
BIT
JR
LD
EX
XOR

wm W

7E41H
A;8C3H ;C3=JP OP
(418EH) ;A 5 ADRRESS OF "NAME"

HL, START
(418FH) , HL
1A33H

BC, (48F%H)
A, (COUNT)
]
NZ,NOT15
2BH

A

Z,AGN

A, 15

A
(COUNT), A
BC

HL

DE, (48FBH)
HL, DE
z,0UT
BC

BC

A, B8DH
3I3H
A, (BC)
33H
BC

A, (BC)
3I3H
BC ; POINT TO CODE LENGTH
A, (BC)

(46AFH) , A

2 ; INTEGER?

NZ,NOTINT

A%’

33H

A, ="

33H

BC

BC

BC

A, (BC) $VALUE MSB

(4121H),A i WRAL

BC

A, (BC)

(4122H),A

HL, (4121H)

7,H ; TEST FOR NEG VALUE
Z,P0OS

DE, S

DE,HL

A ; CLEAR CARRY

§START OF VLT

5END OF VLT+1
5 TEST FOR END

s LINE FEED

DOS EXI

29880
299993
99920
20949
29969
259809
219099
219020
21949
21069
21980
21109
211209
21149
g1169
#1189
91209
91229
21249
B1269
21289
#1309
#1320
21349
#1369
21389
21499
21429
91449
#1469
#1489
21589
21529
21549
21569
#1589
21699
#1628
21649
B1669
91689
21799
21720
21749
21769
21789
21899
21829
21849
21869
#1889
21999
21929
91949
81969

POS

STEP
ouT
NOTINT

LOOP1

HALFWY
NOTSNG

STRING

SBC
LD
CALL
PUSH
CALL
POP
INC
JR
HALT
CP

LD
CALL
INC
INC
INC
LD
LD
LD
LD
INC
INC
DEC
JR
LD
PUSH
CALL
CALL
POP
JR
CP
JR
LD
CALL
LD
CALL
INC
INC
INC
LD
LD
JR
cP
JR
LD
CALL
LD
CALL
LD
CALL
INC
INC
INC
LD
PUSH

HL, DE 5 TWOS COMPLIMENT IT
A, -’

33H

BC

PFAFH

BC

BC

NEXT

a4 ; SINGLE PRECISION?
NZ,NOTSNG

A, =

33H

BC

BC

BC ; POINT
D,4a

HL,4121H

A, (BC)

(HL) ,A

HL

BC

D

NZ,LOOP1

A0 ;NO PRINT USING
BC
GFBEH
28A7H
BC
STEP
8 ; STRING?
NZ,STRING

A, H’ ; MUST BE DBL
3I3H

A, "="

3I3H

BC

BC

BC

D,8

HL,411DH

LOOP1

3

NZ,0UT

A,'S’

3I3H

A, ="

3I3H

A"

33H

BC

BC

BC

A, (BC)

AF

TO VALUE

5 CONVERT TO ASCII & STORE
s PRINT IT

(€861 HI8W3D30/Y38W3AON) ¥ ON ¥ IWNTOA

O08-OHOIIW

St 39vd

91980 INC BC
22009 LD A, (BC) 3MSB STRING ADDRESS
62020 LD L,A
62049 INC BC
82069 LD A, (BC)
82089 LD H,A
22100 POP AF
92120 cpP o
921490 JR 2,SKIP ;IF NULL STRING
92169 PUSH BC
921890 LD B,A
922606 LOOP2 LD A, (HL)
92220 CALL 33H
82249 INC HL
92260 DINZ LOOP2
92280 POP BC
92398 SKIP INC BC
92320 LD A"
92340 cALL 33H
923690 JR HALFWY
$2380 COUNT DEFB 15
92499 END INIT
START END ENTRY
7E41 7F2C 7E41
7E41: 3E C3 32 8E 41 21 4F 7E 22 8F 41 C3 33 1A ED 4B
7ES1: F9 48 3A 2C 7F FE 90 20 68 CD 2B 90 B7 28 FA 3E
JE61: ©F 3D 32 2C 7F C5 E1 ED SB FB 49 ED 52 28 4A 03
2E71: ©3 3E 9D CD 33 806 6A CD 33 90 9B SA CD 33 99 OB
2Eg81: ©OA 32 AF 49 FE 92 29 32 3E 25 CD 33 66 3E 3D CD
7E91: 33 60 63 63 83 BA 32 21 41 83 A 32 22 41 2A 21
2EAl1: 41 CB 7C 28 ©C 11 99 86 EB AF ED 52 3E 2D CD 33
JEB1: 998 CS CD AF F C1 83 18 99 76 FE 94 20 206 3E 3D
7EC1: CD 33 60 63 83 83 16 64 21 21 41 SA 77 23 93 1S5
JED1: 298 F9 3E 98 C5 CD BE 6F CD A7 28 C1 18 D9 FE 98
JEE1: 29 14 3E 23 CD 33 99 3E 3D CD 33 908 93 93 83 16
7EF1: ©8 21 1D 41 18 D5 FE 83 20 BF 3E 24 CD 33 98 3E
JFg1: 3D CD 33 @0 3E 22 CD 33 99 93 03 03 OA FS 83 OA
7F11: 6F 83 OA 67 F1 FE 90 28 SA CS5 47 7E CD 33 00 23
7F21: 16 F9 C1 83 3E 22 CD 33 99 18 Bl OF

¥% MODEL 3 SOURCE UTILITY #6%

TRS-89

16 REM SOURCE / BAS

EDTASM SOURCE-TAPE UTILITY FOR MODEL III NEWDOS89 V2.9

(copyright

1982

T.

Domigan)

29
39
49
59
69
79
89
99
199
119

120

139
149
159
169
179
189
199
209

219
229
239
249
259
269
279
289
299
399
319
329
339
349
359
369
379
389
399
4909
419
429
439
449
459
469
479
489
499
S99
S19

POKE&H49Bi ; &HE9: POKEKH49B2, ¥HB8J : POKEXKH497F , PEEK (KH49AF)
CLS:CLEARSG: DEFINTA-Z:CP=KkH4923: CC=PEEK (CP) : POKECP, 32
PRINT@?72, "EDTASM ASSEMBLER SOURCE UTILITY FOR MODEL III*®
PRINT TAB(19); "NEWDOS89J Version 2.9"
PRINTTAB(135);5"(Copyright 1982 T. Domigan) ":GOSUB479
DEFUSR9=&H494E : DEFUSR1=H4979: BU=HBOO9 : MD=kH4956
POKE&H4924,&HJF1 : POKEXH4219, 4H28: POKE&XH4214, xHO4
H$=CHR% (244) +CHR% (245) +CHR% (246) +CHR% (32)
CLS:PRINT:PRINTTAB(29); "MENU"
PRINT:PRINT" 1. DISK FILE TO MEMORY BUFFER
2. CASSETTE FILE TO MEMORY BUFFER
3. MEMORY BUFFER TO CASSETTE FILE
4. MEMORY BUFFER TO DISK FILE*®
PRINT" 5. CLEAR MEMORY BUFFER
6. EXIT PROGRAM AND REPAIR BASIC*®
GOSUB469
IF (EQC1)0OR(EQ>6) THENGOTO139ELSEIF (EQ<6) THEN179
POKE&H4214, 4HP9: POKECP, CC: POKE&XH49B1 , ¥HFF : POKE&H49B2, &HFF
POKE&H49A9, PEEK (H497F) : POKEKH49A1 , kHFF : CLEAR: CLOSE: CI_.S: END
ONE@GOTO0189, 249, 399,359,439
ME=BU:CLS:PRINT@398, "DISK FILE TO MEMORY ROUTINE"
PRINT@582, "Enter Filespec (with Extension) ==)> *j
LINEINPUTFS$:0PEN"R",1,FS%, 1:PRINT@720, "OPENING FILE ";H%;FS

FIELD1, 1ASAS

FORI%=1TOLOF (1) :GET1,I%:Y=ASC(A%) :ME=ME+1:POKEME,Y:NEXTI%
CLOSE:PRINT@855, "END OF FILE":GOTO0299

CLS:PRINT@398, "CASSETTE FILE TO MEMORY ROUTINE"
PRINT@S599, "Press ENTER when cassette is ready®":GOSUB469
POKEMD, 150: POKEMD+2, 265: POKEMD+3, 53: POKEMD+4 ;, 2: POKEMD+5, 119
X=USRP (P)

PRINT@845, “Cassette fi1le has been READ to memory"
FORT=1T01999:NEXTT:GO0TO0199

CLS:PRINT@398, "MEMORY TO CASSETTE FILE ROUTINE"
POKEMD, 135: POKEMD+2, 126:POKEMD+3, 295: POKEMD+4, 199 : POKEMD+5, 2
PRINT@S599, "Press ENTER when cassette is ready”:GOSUB469
X=USR@ (P)

PRINTE@847, "Cassette file has been WRITTEN":GOT0299
CLS:PRINT@398, "MEMORY TO DISK FILE ROUTINE"
PRINT@S58S, "Enter Filespec (with Extension) ==) *;
LINEINPUTFS%: OPEN"0",1,FS%: SM=BU: SO=BU+1

PRINT@722, "OPENING FILE *";H%;FS%

S1=PEEK (SM) : S2=PEEK (SO) : PRINT#1,CHR% (S2) ;

IF (S2<>26) THENGOTO428ELSEIF (S1=13) THENCLOSE
PRINT@855, "END OF FILE":GOTO0299

SM=SM+1:S50=S0+1:GOT0399

CLS:PRINT@499, "CLEAR BUFFER ROUTINE*®

Y=USR1(Q)

PRINT@721, "BUFFER IS NOW CLEAN"®:GOTO299

EQS=INKEY%: IFEQ%=""THEN46FELSEEQ=VAL (EQ%) : RETURN
FORDT=6H494ETO&H4987E: READD: POKEDT, D:NEXTDT: RETURN
DATA295,66,48,33,1, 128,243, 205,9,2,9,9,9,9, 35,254

DATA 26,32,247,43,43,126,254,13,49,4,35,35,24,236
DATA295,248,1,201,33,1,128,17,2,128,1,0,112
DATA62,0,119,237,176,201

9v 39Yd

O2B-OHIIW

(€861 Y38W3D3A/Y3IGNIAON) ¥ ON ¥ INNTOA

VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983) MICRO-80 PAGE 47

NEXT MONTH'S ISSUE

L]

Next month’s issue will contain at least the following programs plus the usual features and articles. An (80) after a program
title indicates that the program will be for TRS-80 Model 1/3 or System 80/Video Genie. A (CC) indicates that the program will
be for the TRS-80 Colour Computer and (HP) that the program is for the Hitachi Peach.

CRICKET (CC)
Join in the Summer fun and play your own World Series Cricket on your COCO. Complete with batsmen, bowler and fielders.
A game for two players.

ALIEN CHASE (HP)
Another ‘‘get them before they get you’’ game for Peach users. You pursue the Aliens around the screen and are in turn
pursued by them.

AUTOMATIC DIRECTORY (80) — 32K DISK
Some of the newer DOS'’s have a facility to speed up file manipulation from the Directory. AUTOMATIC DIRECTORY gives
you this facility from earlier DOS’s. You may KILL, L.LOAD or LIST a file simply by placing the cursor against that file name on
the DIRectory display and pressing the appropriate key. In addition, you may assign keys to particular files so you may load such
a file with a single keystroke.

DISK DIRECTORY RECORDER (MODEL 3)
About the time you start on your second box of diskettes, you run into the problem of keeping track of all those files.
It seems a shame to use pen and paper to do this when you have a perfectly good computer there. Disk Directory recorder
stores a sorted catalogue of all files showing the name of each file, its extensions and the name of the disk on which it may
be found. It is thus a simple matter to update your catalogue as you add and delete new files.

FILM COSTING (80) L2/16K
Whilst we do not expect too many of our readers are involved in processing large quantities of photographic film, this {
program which calculates processing costs does illustrate some interesting programming points and could probably be adopted

to a variety of similar uses.

[|

The cassette edition of MICRO-80 contains all the applicable software listed each month, on cassette. For machine language
programs copies of both the source and object file are provided. All programs are recorded twice. Level 1 programs can only
be loaded into a Level 2 machine if the ‘Level 1 in Level 2’ program from the MICRO-80 Software Library — Vol. 1 is loaded first.

Note: System 80/Video Genie computers have had different tape-counters fitted at different times. The approximate start
positions shown are correct for the very early System 80 without the volume control or level meter. They are probably incorrect
for later machines. The rates for a cassette subscription are printed on the inside front cover of each issue of the magazine.

The disk edition contains all applicable programs which can be executed from disk. Level 1 disk programs are saved in
NEWDOS format. Users require the Level 1/CMD utility supplied with NEWDOS + or NEWDOS 80 version 1.0 to run them.

Approx. Start Position

(R p—

Side 1 Type 1.D. Disk Filespec CTR-41 CTR-80 System 80 r
GRAFX INIT PROG 32K DISK I INIT/BAS 18 10 6
GRAFX INIT PROG 32K DISK I INIT BAS 47 26 11 Y
2eg=2 £ 5
228z = 8 t
ET S8 2 €
~ (G w
=N g 2 o r
5528 ° :
o
> © @ s = C
= o @ e - e =
: £t 2 =) 2
®) 3 29 ° e = F
= 9 ¥ 3« D s g
- 5 g . =% & & £ gy
Ss ° * £ i I-gg o, £ §F 3% K
: * T 2 c £ 4]
48 5 = m§§§ & Q v gé
=L £ & £5.8% & 2 £
2 -~ £
538 : 1 A
“-§§ = O >89 g ® 8 5T
= w = It = =
g3z @ z L5532) § 58 2o
— @ N
o St ° . T oE=c¢€ 3 g 5 Tk
™ - Q9 © g c »n @
Fee o 23 * Esg s o o = a g
o n o1 g~ =g Bg & & 18 o
d - © e = o = IS -
N . [N~4 Sa Y o n > ©]
& E (‘cf;i :Q’mm ax w 2 %8
< u o = —CESE Sg 2 2 52>
; & _ < 25 +* & g¢
- - O y @ N
oPug = . Fe2% 32 g B ovy
PUWRO G e 3 =8k o £ & 5 &3
o R . <
OE{XO 5.2 1S o ggg«g }EE s e 29
o < 0w] 3 25 .. 2c € & Wl
o%OD © =4 < ¢ gg g 3 ¢ 7=
sH05 &2 gERZ o5 2 £ L&
S . S — oo aow 5 & 3] L w B
P i R 7 P :
000 wa o 7 7 O . o @ 4
o d -3 252822 o © £ 2o I
Foaed® = a TR2A2E wo UL F aa

PAGE 48 MICRO-80 VOLUME 4 No. 4 (NOVEMBER/DECEMBER 1983)

GRAFX 32K DISK G GRAFX/BAS 74 41 19
GRAFX 32K DISK G GRAFX/BAS 138 77 41
AUSTRALIA'S CUP L2/16K A AUSCUP/BAS 180 101 56
AUSTRALIA'S CUP L2/16K A AUSCUP/BAS 269 151 87
LVAR UTILITY SYSTEM LVAR LVAR/CMD 348 196 122
LVAR UTILITY SYSTEM LVAR LVAR/CMD 353 199 122
LVAR UTILITY EDTASM LVAR LVAR/EDT 359 202 128
LVAR UTILITY EDTASM LVAR LVAR/EDT 381 215 136
SOURCE UTILITY MODEL 3 S SOURCE/BAS 403 227 148
SOURCE UTILITY MODEL 3 S SOURCE/BAS 422 238 160
Side 2
HI RES WRITER 1.1 COCO EDTASM HIRES — 18 10 —
HI RES WRITER 1.1 COCO BINARY HIRES —_ 251 141 —
HI RES WRITER 1.1 COCO BINARY HIRES — 307 173 -
TRACK RACER HITACHI PEACH TRACK — 352 198 —
TRACK RACER HITACHI PEACH TRACK — 364 205 —
DECEMBER
Side 1
YAHT ZEE MOD 3/BASIC Y YAHT ZEE/BAS 18 10 6
YAHT ZEE MOD3/BASIC Y YAHT ZEE/BAS 101 58 39
BOLD PRINTING L2/16K B BOLD/BAS 178 101 68
BOLD PRINTING L216K B BOLD/BAS 188 107 72
SPACE UTILITY SPACE SPACE SPACE/CMD 200 112 75
OBJECT CODE SPACE SPACE SPACE/CMD 210 115 77
SPACE UTILITY SPACES SPACES SPACE/EDT 220 120 81
SOURCE CODE SPACES SPACES SPACE/EDT 260 144 97
SPACE UTILITY L2/16K SP16K - 300 166 112
OBJECT CODE L2/16K SP16K — 308 170 114
HOUSEHOLD ACCOUNTS
MODULE 1 MOD4/DISK 1 MODULE1/BAS 316 176
MODULE 2 MOD4/DISK 2 MODULE2/BAS 336 187 —
MODULE 3 MOD4/DISK 3 MODULEGS/BAS 352 196 —
MODULE 4 MOD4/DISK 4 MODULE4/BAS 370 206 —
MODULE 5 MOD4/DISK 5 MODULES/BAS 398 222 —
MODULE 6 MOD4/DISK 6 MODULE6/BAS 413 231 —
MODULE 7 MOD4/DISK 7 MODULE7/BAS 444 249 —
Side 2
HOUSEHOLD ACCOUNTS MOD4/DISK 8 MODULES8/BAS 18 10 —
MODULE 8
SIRIUS ADVENTURE PEACH SIRIUS —_ 51 30
HOUSEHOLD ACCOUNTS PEACH ACCTS — 159 92 —
KILLER SATELLITE CccC. KILLER — 280 162 —
KILLER SATELLITE CccC. KILLER — 293 170 —
SIRIUS ADVENTURE ccC. SIRIUS — 308 180 -
SIRIUS ADVENTURE CccC. SIRIUS — 342 200 —
> z O 4 i i
S 2 3 8 i i
> R 2 D s
m . = O o) : H :
7S ® = s B A @
2 83 o i i 3
AN g b i g
- o - @
- 2 S80S %2 2
m =
O 2 o 8 g § .-B-v g & O
O milec g 7 = 2 > :
™ 30O Ooly Z € € g S O
2 T n o o O C
523¢% D i & F 8 “ co
x S|= ¢ o . % T 5
5 a®b “4la ®° 3 8 g 8 I;
Ry a S ol8 S =z = =l 3 JC> o
2 = z 2 = =z 3 3
: £ 0z £ 5%3% 539
& g =3 g 2003 N
~ 3 - o O o = 3 ':_C\)
z 2 5 © v v Q c> P
c - = = D w
m 3 O & S £ 0O > a0
x o a e - =~ 0 Q 89
° 2 3 s T 38 § WO
= 2 @ & © S &2
m 53 g 9
2 T 8 & ogs 8
S = % g 3 9
: - Qa —+ D
g = 2 v
3| 88
e g o
@ s >
2
3

SAVE A PACKET ON MICRO-80’s DISK DRIVE PACKAGES
FOR TRS-80 MODEL 1 AND SYSTEM 80 MICROCOMPUTERS

SINGLE DRIVE PACKAGE from ... $499 DUAL DRIVE PACKAGE from ... $874

Bigger volume means lower cost price, which we are passing on to you. Avoid the annoying bundle of cables,
wires and separate boxes. MICRO-80 is now offering our well-proven MPI disk drives in attractive, self-contained
single or dual-drive cabinets complete with internal power supply. Our drive @ and dual-drive packages also in-
clude the appropriate version of DOSPLUS and dual-drive cable.

The best news of all is the specially reduced package prices ...
SAVE $23 — $107 over our already low prices!

Choose the appropriate system from the table below:

No. of No. of . Dosplus . *

DRIVE TYPE Tracks Heads Capacity Versl:ion Price Saving
DRIVE O

1 x MPI B51 40 1 100K 3.4 $499 $137.95
1 x MPI B52 40 2 200K 3.4 $639 $97.95
1 x MPI B92 80 2 400K 3.4 $799 $107.95
DRIVE 1

1 x MPI B51 40 1 100K - $415 $33.00
1 x MPI B52 40 2 200K — $525 $23.00
1 x MPI B92 80 2 400K - $695 $23.00

*Represents the saving compared with buying all the items included in the package separately

*Drive @ package includes one bare disk drive, self-contained single- ~ ®Drive 1 package includes one bare disk drive and self-contained
drive cabinet/power supply as illustrated, two drive cable and the ver- single-drive cabinet/power supply as illustrated.
sion of DOSPLUS indicated.

If it's a dual-drive system you need, then take advantage of our dual-drive package and

SAVE a further $40 on the price of two single-drive packages ...

No. of No. of Dosplus

DRIVE TYPE Tracks Heads Capacity Version Price
2 x MPI B51 40 ea 1ea 2 x 100K 3.4 $874
2 x MPI B52 40 ea 2 ea 2 x 200K 3.4 $1125
2 x MPI B92 80 ea 2 ea 2 x 400K 3.4 $1454

Dual-drive package includes two bare disk drives, self-contained dual- ~ NOTE: All 40 track drives are completely compatible with 35 track

drive cabinet/power supply as illustrated, two drive cables and the operating systems such as TRSDOS. DOSPLUS allows you to realise an

version of Dosplus indicated. additional 14% capacity compared with TRSDOS. Under DOSPLUS 3.4,
80 track drives can read 35/40 track diskettes.

All disk drive components are still available separately:

BARE DRIVES — MPI drives offer the fastest track-to-track access time (5 milliseconds) available. All drives are capable
of operating in double density for 80% greater storage capacity.

Price Freight
MPI B51 40 track, single-head, 100K $349 $5.00 Self-contained, single drive cabinet/power supply $99 $5.00
MPI B52 40 track, dual-head, 200K $449 $5.00 Self-contained, dual-drive cabinet/power supply $135 $5.00
MPI B92 80 track, dual-head, 400K $619 $5.00 Two drive cable $39 $2.00
Separate, dual-drive power supply $85 Four drive cable $49 $2.

Prices are FOB Adelaide. Add $5.00 freight for single drive package, $10.00 for dual-drive package. Prices are in Australian dollars.
Freight is road freight anywhere in Australia.

All items carry a 90-day parts and labour warranty. Repairs to be carried out in our Adelaide workshops.

LEVEL 2 ROM

ASSEMBLY LANGUAGE TOOLKIT

by Edwin Paay

FOR TRS-80 MODEL 1, MODEL 3
AND SYSTEM 80/VIDEO GENIE

This is a new package consisting of two invaluable components:

*A ROM REFERENCE Manual which catalogues, describes and cross-references the

useful and usable ROM routines which you can incorporate into your own machine
language or BASIC programs.

*DBUG, a machine language disassembling debugging program to speed up the

development of your own machine language programs. DBUG is distributed on a
cassette and may used from disk or cassette.

Part 1 of the ROM REFERENCE manual gives detailed explanations of the processes used for
arithmetical calculations, logical operations, riata movements etc. it also describes the various for-
mats used for BASIC, System and Editor/ Assembly tapes. There is a special section devoted to those
additional routines in the TRS-80 Model 3 ROM. This is the first time this information has been made
available, anywhere. Differences between the System 80/Video Genie are also described. Part 1 is

organised Iinto subject specific tables so that you can quickly locate all the routines to carry out a
given function and then choose the one which meets your requirements.

Part 2 gives detailed information about each of the routines in the order in which they appear in
the ROM. it describes their functions, explains how to use them in your own machine language
programs and notes the effect of each on the various ZBO registers.

Part 2 also details the contents of system RAM and shows you how to intercept BASIC routines.
With this knowledge, you can add your own commands to BASIC, for instance, or position BASIC
programs in high memory — the only restriction Is your own imagination|

The Appendices contain sample programmes which show you how you can use the ROM routines
to speed up your machine language programs and reduce the amount of code you need to write.

DBUG: Eddy Paay was not satisfied with any of the commercially available debugging programs,
so he developed his own. DBUG: allows you to single-step through your program, has a
disassembler which disassembles the next instruction before executing it or allows you to bypass
execution and pass on through the program, disassembiing as you go; displays/edits memory In
Hex or ASCH; allows Register editing, has the ability to read and write System tapes and all this on
the bottom 3 lines of your screen, thus freeing the rest of the screen for program displays. Four ver-
sions of DBUG are included in the package to cope with different memory sizes.

The best news of all Is the price. The complete Level 2 ROM ASSEMBLY LANGUAGE
TOOLKIT Is only:

— AUS. $29.95 + $2.00 pé&p
— UK £18.00 + £1.00 p&p

SPECIAL OFFER TO OWNERS OF THE LEVEL Il ROM REFERENCE MANUAL ...

UPGRADE TO THIS ASSEMBLY LANGUAGE TOOKIT FOR ONLY $19.95]
Send back your original Level I ROM Reference Manual plus a cheque, money order or
Bankcard authorisation for $19.95 plus $2.00 p&p and we willl send you the new
ASSEMBLY LANGUAGE TOOLKIT

	_0516075241_001.pdf
	_0516075248_001.pdf
	_0516075300_001.pdf
	_0516075307_001.pdf
	_0516075316_001.pdf
	_0516075321_001.pdf
	_0516075331_001.pdf
	_0516075337_001.pdf
	_0516075346_001.pdf
	_0516075351_001.pdf
	_0516075400_001.pdf
	_0516075405_001.pdf
	_0516075413_001.pdf
	_0516075424_001.pdf
	_0516075432_001.pdf
	_0516075438_001.pdf
	_0516075446_001.pdf
	_0516075454_001.pdf
	_0516075501_001.pdf
	_0516075514_001.pdf
	_0516075520_001.pdf
	_0516075531_001.pdf
	_0516075542_001.pdf
	_0516075549_001.pdf
	_0516075558_001.pdf
	_0516075606_001.pdf
	_0516075618_001.pdf
	_0516075624_001.pdf
	_0516075633_001.pdf
	_0516075638_001.pdf
	_0516075648_001.pdf
	_0516075655_001.pdf
	_0516075706_001.pdf
	_0516075712_001.pdf
	_0516075721_001.pdf
	_0516075727_001.pdf
	_0516075737_001.pdf
	_0516075741_001.pdf
	_0516075753_001.pdf
	_0516075759_001.pdf
	_0516075807_001.pdf
	_0516075813_001.pdf
	_0516075821_001.pdf
	_0516075827_001.pdf
	_0516075836_001.pdf
	_0516075842_001.pdf
	_0516075853_001.pdf
	_0516075859_001.pdf
	_0516075908_001.pdf
	_0516075919_001.pdf

