Written by Bruce G. Hansen

TASMON &

o

jipl=
ALTERNATE
~S@URCE

TABLE OF CONTENTS

TASMON Formats and Conventions
Memory Usage « + +« o &
Loading and Re-entering TASMON .
Exiting TASMON
TASMON Commands
Replace Registers
Modify Memory .

.
-
.
.
.

* = s =

- »
¢ = = L I
* & @ - + =
. » @ . =
* 8 = * o« &

L T T Y .« & &

Memory Dumps

Hex Dump . « ¢« v v & ¢ ¢« ¢ o & « o o .
ASCITI Dump . « & v & & & & o o o & o+ & .
Disassembled Dump« . .
Disassembled Listing to Printer
Dump Screen Contents to Printer
Sum/Subtract Hex Values

Find Consecutive Bytes in Memory . . .
Zero a Block of Memory . . . « + . + .

Skip or Back Up One Instruction
User Routine + +« ¢« ¢ o « « o« & «
Clear Screen« « 4 « &+ & o + « o a
Relocate and Move Memory + . .« . .
Move a Block of Memory « ¢« « « « .
Input/Output . v s e . . .
Loading System Tapes and CMD Disk Files .
View a File

Writing Out a System Tape or CMD Disk File
Disassembled Output to Disk or Tape . .

Breakpoints s e e e e e e
Set and Display Breakpoints e e e e e s .
Set Number of Executions Before Break . .

Clear Breakpoints « « + .+ .
Instruction Step Commands
Single Step . « . .« + + 4 ¢ 4 4 4 e e e
Single Stepping Restarts
Trace Command . . « + ¢« « & + « o o o «
Go Command ¢ & « v 4 o« 4 o o o o
Keep Screen . .+ + + « « & v 4 o & . e
General Comments e s s e e s
Single Stepping Through BAQIC o« e s+ s u
Sample Sessions

Appendix A: DOS Error Messages .
Appendix B: TASMON Command Summary .
Appendix C: Sample User Patch . . .
D.
E

Appendix

Appendix Technical Information .

.

*« 0w s & »

- e =

Patch for Series I Editor/Assembler

LUV~ I~TIDOD NP ANAND B WWWWH M

TASMON - MONITOR PROGRAM FOR THE TRS-80

With TASMON (The Alternate Source's Monitor), memory may be
examined/modified and machine language programs executed.
Machine language programs may be run in real time, single step or
slow motion. Your Z-80 registers may be examined/modified. They
are continuously displayed in the upper right part of the screen.
Three different memory dumps can be displayed on the left side of
the screen while executing any TASMON command on the right side
of the screen. Memory can be disassembled and routed to disk or
tape as an Editor/Assembler source file with labels generated for
pertinent addresses. SYSTEM tapes and machine language disk
files can be read in and written out.

TASMON FORMATS AND CONVENTIONS
All numbers displayed by TASMON are hex unless otherwise noted.

In all examples given below, user inputs are underlined.

The version of TASMON on the distributed diskette or tape loads
in memory from 6000-7FFF with an entry point of 6000.

There 1is also a short machine language program entitled

"TEST/CMD" which is used in the sessions discussed at the end of
this manual.

For the most part, TASMON uses single letter commands and the
ENTER key is not needed. The BREAK key may be depressed at any
time to exit a command (except when writing/loading files to/from
disk or tape). The LEFT ARROW does not backspace the cursor
(unless entering a file name) so hit the BREAK key and re-enter
the command if a mistake is made.

When a four or two digit number is being input, any and all
leading zeros must be entered.

TASMON uses 1its own keyboard, video and printer routines. 1If a
key 1s held down, after a pause it will start repeating. The
video display supports upper/lower case. If no lower case mod is
installed, all lower case characters are converted to upper case.

When TASMON is entered, the user's stack pointer is set at 41FE.
The user may change it as needed provided it does not interfere
with TASMON.

The register display appears on the the right side of the screen
in this format:

CALL 01C9

IX 52A8 IY F28A
AF' E23A BC' 1530
DE' O6FA HL' BCO0O9

AF 0044 BC 0284
DE D980 HL 3DF5
SP 41E4 PC 8000
~ZL=—~—P~~ (HL) FF

The top line is the Zilog disassembled mnemonic of the
instruction pointed to by the PC register (8000 in this case).
The four digit hex number following each register pair is the
current value of that register pair. The 1last 1line of the
display is the status of the 2-80 flags (F register). A et
indicates that the bit is cleared. The "FF" following "(HL)" |is
the value found at the current address of HL. In this case "FF"
is at memory location 3DF5. All user \inputs are done on the
eight lines below the register display.

MEMORY USAGE

TASMON uses approximately 8K of memory. Some ROM routines are
used to decrease program size. No RAM outside of TASMON is used
with the exception of the symbol table when disassembling to disk
or tape and the user's screen memory when using the KEEP SCREEN
command.

LOADING AND REENTERING TASMON
For executing the program from disk, type the following from DOS:

TASMON

The 2Z-80 registers and the right arrow user prompt will be
displayed.

To load a tape version of TASMON type:

>SYSTEM
*? TASMON

*? ZgENTER)

The display will be the same as with the disk version.

If TASMON is exited for some reason there are two ways to reenter
the monitor:

1) Go to BASIC and type:

>SYSTEM
*? /start address

where "start address" is the decimal starting address of where
TASMON was located in memory.

2) With a DOS system enter DEBUG and type:

G start address

where "start address'" is the hex starting address of where TASMON
was located in memory.

When TASMON is reentered in this manner the user's registers are
not changed. However, any breakpoints that were set are cleared.

EXITING TASMON

The "E" or EXIT command is used to leave TASMON. To execute this
command enter;

E <ENTER)

The ENTER key needs to be pressed as a safety precaution to
prevent exiting the monitor unexpectedly. Do not EXIT when disk
drives are turning or the computer will lock up.

TASMON COMMANDS

The following is a list of TASMON's commands and the format with
which they are entered.

REPLACE REGISTERS

The REPLACE command changes any of the 2-80 registers. To use
the command press "R", the first letter of the register pair to
be changed (the second letter is also required for IX and 1Y),
and the new four digit register value. An apostrophe is typed
after the register pair name if the secondary set is to be
changed. The display will appear as follows:

R HL O9AF set HL to O09AF
R AF' 2044 set AF' to 2044

MODIFY MEMORY

The Modify memory command allows the user to change the contents
of RAM. To execute the command press "M", an "A" or "H" (for
modification to be in ASCII or hex mode) followed by the address
to modify. If the ENTER key is depressed for the address to
modify, the current PC address is used for the starting
modification address.

The ASCII modification mode accepts single character ASCII values
and places them in the addresses being modified. The only
control code recognized is the carriage return. The hex mode
puts two digit hex values into an address. The current contents

of the modification address will be displayed in the format:

ADDRESS ASCII HEX

Where "ADDRESS" is the memory address being modified, "ASCII" |is
the ASCII value of the byte at "ADDRESS" (only displayed if the
value is between 20-7F) and "HEX" is the hex value of the byte.

To change the contents of ADDRESS, type in a new two digit hex
value or one ASCII character depending on which modification mode
was selected. The up arrow will leave the current address
unmodified and move up in memory one byte. The down arrow will
move down in memory one byte. To exit, hit the BREAK key. A
typical display is:

M H 707F C 43 AE Hex modify mode, address is 707F,
ASCII value of byte at that address
is "C", the hex value is 43 and the
byte was changed to AF.

7080 82 <UP ARROW> Move up one byte

707F AE <{BREAK> Exit modify mode

MEMORY DUMPS

There are three memory dumps in TASMON:
1) Hexadecimal dump
2) ASCII dump
3) Disassembled dump

All three dumps are initiated by pressing the appropriate command
key followed by a four digit hex value where the dump is to
start. Pressing the ENTER key instead of the four digit starting
value causes the dump to begin at the current PC register. The
screen will clear and 15 lines of the dump will be displayed.

Pressing the SPACE BAR at this point causes the next 15 lines to
be displayed. The DOWN ARROW is used to display the next line.
Pressing the "~" key causes the display to move back in memory 15
lines (784 bytes with ASCII and Hex dumps, 15 instructions with
disassembler). Holding down any of these command keys will cause
them to repeat. Pressing the BREAK key, as always, returns
control to command mode.

HEX DUMP

The hex dump will display the hexadecimal values of memory
starting with the address entered. For example:

H 5200

will cause this type of display to appear on fifteen lines:

5200 45 AF 20 OF C3 DD 00 ED

5208 34 A8 FF FF 99 83 FA 00
The 5200 is the address and 45 is located there, 5201 holds AF,
etc.

ASCIl DUMP

The ASCII dump will display 20-7F values as the appropriate ASCII
character. All other values are displayed in hex. For example:

A FOOC

will cause this type of display on fifteen lines:

FOOC T H EQ00O03 B O Y

DISASSEMBLED DUMP

The Disassembled dump will display memory in Zilog mnemonics.
This dump makes reading programs much easier. For example:

D 0000

will cause the screen to clear and fifteen lines like the
following to appear:

0000 FE DI
0001 AF XOR A
0002 C37406 JP 0674

Relative jump addresses are displayed giving their destination
address (like an absolute jump) instead of a relative offset.

Illegal instructions are disassembled with "DEFB h" as the
instruction where "h" is the offending byte. For example:

8000 CB DEFB CB
8001 3007 JR NC,800A

DISASSEMBLED LISTING TO PRINTER

The "P" or PRINT command is used to route disassembly to the
printer. To run this command press "P", the starting address of
the dump and the ending address of the dump. The disassembly is
also echoed on the screen. Pressing the BREAK key at any time
will cause printing to stop. If this command is executed and the
printer 1is not ready, controcl returns to TASMON with nothing
printed. For example:

P 0000 OOFO Disassemble to the printer starting at
0000 and ending at OOFO.

DUMP SCREEN CONTENTS TO PRINTER

Pressing the "*" key while TASMON is waiting for keyboard input
(except when a file name is being entered) will cause the current
screen display to be sent to the printer. If the printer is not
ready at the time the "*" is pressed, nothing is printed and

control returns to TASMON. Graphics characters are printed as
periods.

SUM/SUBTRACT HEX VALUES

This command will either sum or subtract two four digit hex
values. Press "8" and two values followed by a "+" for sum or a

"-" for subtract. The second value is added to or subtracted
from the first. For example:

S 0100 8023 + 8123
5 EC00 0100 = EBOO

FIND CONSECUTIVE BYTES IN MEMORY

The find command will locate positions in memory where from 1 to
4 user specified two digit hex digits occur.

To run the command press "F", the starting address of the search
and from 1 to 4 two digit search bytes. If less than 4 bytes are
input, the ENTER key must be depressed to start the gearch.
Pressing "F" followed by ENTER will find the next occurence of
the last search key entered.

The address where the bytes were found is printed after the
command line. If no value 1is printed, there were no more
occurences of the search key in memory. For example:

F 0000 AF 54 <ENTER> 4176 find where AF 54 resides in
memory starting at 0000. First
occurence was at 4176

F <ENTER> 87FE find next occurence of AF 54.
Found to be at 87FE

F <ENTER> no value printed so no more
occurences

NOTE: the FIND command will always locate at least one occurence
of the search key since the search key is stored in TASMON.

ZERO A BLOCK OF MEMORY

The "Z'" or ZERO MEMORY command is used to set a block of memory
to some value. To execute ZERO MEMORY, press the "2" key, a

starting address, an ending address and a two digit hex value to
be written into the block. For example:

Z FOO0 FO50 54 will set memory from FOOO through
F050 to 54.

Z FOGO FO50 00 will set memory from FOOO through
F050 to 00.

SKIP OR BACK UP ONE INSTRUCTION

To move the user's PC register to the next instruction without
executing the current instruction press the RIGHT ARROW key. To
move back to the previous instruction press the L.EFT ARROW key.
These commands allow an instruction to he easily repeated or
skipped. For example:

If the user's PC register holds 8000 and the following code is in
memory:

7FFD 2110F0 LD HL,F010
8000 110000 LD DE, 0000
8003 C38392 JP 9283

Pressing the LEFT ARROW would move the PC register back one

instruction or to 7FFD. Pressing the RIGHT ARROW would skip the
instruction at 8000 and move PC to 8003.

USER ROUTINE

This command is wundefined by TASMON. It allows the user to
define a routine to be executed by pressing the "U" key. If the
"U" key 1s pressed without a user routine present nothing
happens. To put a user routine in place, TASMON must be changed
via the MODIFY MEMORY command so it will jump to the routine.
The first step is to find where 1in memory to modify. TASMON
checks for commands with the following type of code:

CP g’
JP Z,ADDRESS

To patch in a user routine the address at "ADDRESS" must be
changed to the entry address of the user's routine. To find
where to modify enter the following:

F 6000 FE 55 CA <ENTER> 6085
The FIND command just found the first occurence of the menu
select routine for the "U" key. The 6000 address should be
substituted with the starting address of TASMON (6000 in this
case)., The FE 655 is a "CP 'U'" Z-80 instruction, and the CA is
the first byte of the '"JP Z,ADDRESS" instruction.

To patch the user routine in place, MODIFY MEMORY in hex at three
plus the address returned by FIND (this is the jump address).
Now type in the entry address of the user routine in Z-80 format
(LSB first, MSB last).

The patched version of TASMON can be written to disk or tape.
Refer to the WRITE command discussed below for instructions on
how to do so.

To return from the user routine to TASMON simply do a Z~-80 "RET"
instruction (assuming the stack pointer has not changed).

The USER function will be suppofted by various routines 1in the
future. :

CLEAR SCREEN

The clear screen command will c¢lear the video display and

redisplay the 2Z-80 registers. To execute this command press the
CLEAR key.

RELOCATE AND MOVE MEMORY

The RELOCATE command allows a machine language program to be
moved from one location to another. All necessary Jjumps and
loads within the range of relocation are changed. This command
can be used to move TASMON from one location to another.
RELOCATE c¢an move many other machine language programs to new
execution addresses. '

To RELOCATE memory, press an "X" followed by the starting point
of the move, the ending point of the move and the starting
address of where the code is to be moved to. RELOCATION takes
about 6 seconds per 4K of memory moved. _

Suppose a program was loaded in memory from 8000 to Q?FF and we
want to move it to E000 to FFFF. The command flow would go like
this:

X 8000 9FFF EOQOO RELOCATE from 8000 to 9FFF
and move it to EOOO

NOTE: The RELOCATE command will function correctly 1if code is

overlapped. However, it will not allow TASMON to be overlapped
while relocating.

For example, if a program resides from 8000 to 9FFF and is
relocated to a new starting address of 9000, the relocated code
will reside from 9000-AFFF. The relocated version overlaps the
origin memory block of 8000 to 9FFF. This type of relocation
will work with all programs except TASMON.

A problem can occur when relocating. For example, suppose the
following code was in memory:

8000 210080 LD BC,B8000H
8003 CD6000C CALL 0060H

Suppose we relocated memory from 8000 through 80FF to EO000. The
code at E000 would appear as follows:

EO00 2100EO LD BC,O0EQOCH
EO003 CD6000 CALL 0060H

If 8000 was a pointer to a text message, the change from 8000 to
EQCO0 would be correct, but in this case the B000 was a stall
value since the ROM call to 0060 is a stall routine. The change
from 8000 to E000 in effect doubles this stall.

There are other occurences of this type. Another is when a
register pair is loaded with, for example, the number of bytes to

read from a disk file. 1If this number is changed the results
could be disastrous.

Even with these two potential problems, RELOCATE does function
with most programs.

MOVE A BLOCK OF MEMORY

To MOVE a block of memory from one location to another use the
"Y" command. The command parameters are the same as for the
RELOCATE (starting address, ending address and new starting
address) command. This command simply copies memory from one
location to another. The move routine is "smart'" enough to allow
code to overlap. For example:

Y FO0O0 F035 EQQO Move memory from FOOO through
to F035 to E000

INPUT/QUTPUT

The author of TASMON chose to make the program's disk I1/0 file
oriented rather than sector oriented as most other monitors.
This allows a disk file to he loaded into RAM and then written
back out as a SYSTEM tape.

LOADING SYSTEM TAPES AND CMD DISK FILES

To LOAD a SYSTEM tape into memory press the "L' key, a "T" (for
tape), and hit ENTER or a four digit offset value.

If the ENTER key is depressed, the module will load into memory
normally. If an offset value was entered, this value is added to
the load addresses of the tape and data is 1loaded at the new
address. The reason for this offset value is that tapes loading
at addresses 4000-51FF will destroy DOS. 1If DOS is not intact,
TASMON can not write or read disk files. If the load is offset

so it does not interfere with DOS, TASMON disk commands will
function normally. For example:

L T <ENTER> Load a SYSTEM tape
L T 4000 Load a SYSTEM tape and add 4000
to its load addresses.

The file name of the SYSTEM tape is displayed when loading.

To LOAD a CMD file from disk press the "L" key, the "D" key
signifying disk, the ENTER key or a load offset and a filename.
For example: ‘

L D <ENTER> Load the file TEST/CMD into memory from disk

TEST/CMD

After a module is loaded, the starting, ending and transfer

addresses are displayed in that order. A typical load display
would be:

L T <ENTER>
FoO0 FO35 Fo10

The starting address of the module is F000, the ending address is
F035 and the transfer address is F010.

If a SYSTEM tape is offset, use the SUBTRACT command to figure
where it would normally load by subtracting the load offset from

the starting, ending and transfer addresses. If the module would
interfer with DOS, the user is left with two options:

1) Enter the block move program given below
2) Relocate the program

10

The block move program discussed here will create a module like
those made with Apparat's LMOFFSET. This code will move the
module to its correct starting address and start it running. To
enter this appendage program MODIFY MEMORY in hex mode starting
one byte after the ending address of the module just loaded.

The block move program appears as follows:

21 xx xx LD HL,starting address

11 vy yy LD DE,starting address - offset

01 zz zz LD BC,ending address - starting address +1
ED BO LDIR

C3 tt tt JP transfer address - offset

An example of this procedure would be as follows:

L T 2000 -
8350 6BFA 6500

A SYSTEM tape was loaded with an offset of 2000. The starting
address is 6350, the ending address 1is 6BFA and the transfer
address is 6500. Subtracting the offset of 2000 from these
values gives 4350, 4BFA and 4500, which would interfere with DOS
(DO8's high memory address is 51FF). The following bytes would
be entered as the appendage program starting at 6BFB, or one byte

after the ending address of the example tape, with the MODIFY
MEMORY command:

21 50 63 11 50 43 01 71 09 ED BO C3 00 45

In Z-80 mnemonics, the program is:

LD HL , 6350
LD DE, 4350
LD BC,09871
LDIR

Jp 4500

Notice that "xx", "yy", "zz", and "tt" where substituted by the
appropriate values. In this case 6350 for '"xx", 4350 for ‘'yy",
0971 for "zz" and 4500 for "tt." Also note that the addresses
are entered in Z-80 format - LSB first, MSB second (i.e. 4350 is
entered as 50 43).

The starting, ending and transfer addresses of the loaded SYSTFEM
tape and the appendage program are 6350, 6C08 and 6BFB
respectively. The starting address is the same since no code was
added to the beginning of the program. The new ending address is
the original ending address plus the length of the appendage
program (6BFA + OOOE or 6C08). The transfer address is changed
so it executes the appendage program instead of the loaded SYSTEM
tape (the appendage program will jump to the loaded program after

11

the move is through). Since the block move appendage program
starts at G6BFB, the transfer address is also GBFB.

The second option of relocating the program may not always work
for reasons discussed under RELOCATE.

The module loaded above will be wused as an example of this

procedure. The starting, ending and transfer addresses were
6350, 6BFA and 6500 respectively.

The first step is to block move the module from its offset
location to 1ts normal executing location. 1In this case the
module is located from 6350 to 6BFA and should be at 4350 to
4BFA. These numbers are figured by subtracting the load offset
from the offset starting, ending and transfer addresses. In this
case the 4350 is derived by subtracting 2000 from 6350, etc. The

"Y" block move is used move the program to its normal addresses
as follows:

Y 6350 6BFA 4350 move memory from 6350 through 6BFA
to memory starting at 4350

Now the program is at its normal execution location, 4350 through
ABFA. DOS has also been overwritten so all TASMON disk commands
are now disabled.

Now the RELOCATE command can be used to move the program up to
high memory and change all necessary instructions of the program
so it will run at high memory. Suppose we wanted to move it so
it would start at 7350. The "X" command would be used as
follows:

X 4350 4BFA 7350 relocate memory from 4350 through
4BFA to memory starting at 7350

Now the program resides at 7350 through 7BFA. The entry address
can be found by adding the relocate offset to the original entry
address. In this case the relocate offset is 3000 (7350 -~ 4350)
and the original entry address is 4500 which gives a new entry
address of 7500. :

To verify that the relocated version of the program functions
correctly, type the following:

G 7500 Start execution at 7500 ("G" is discussed
below)

I1f the relocated version of the program is to be written back out
to disk, press the RESET button to reboot DOS and write the file
out as described in the WRITE command instructions. The
starting, ending and transfer addresses of the relocated version
are 7450, 7BFA and 7500 respectively.

12

Most, but not all programs will function correctly when moved by
this process. When a program is found not to work when
relocated, use the block move technique described above.

VIEW A FILE

The VIEW command is similiar to the LOAD command in that it

returns the starting, ending and transfer addresses of a disk or
tape file, except the VIEW command does not load the file 1into
memory .

To execute the VIEW command press "V" and a "T" for tape or "D"
for disk. If tape was selected no other parameters are entered.
If disk was selected a file name must be entered. For example:

yb
cnassgcnn
0 BFA3 7535

The file "CHESS/CMD" was VIEWed from disk. The starting, ending
and transfer addresses were found to be 7000, B8FA3 and 7535
respectively. Memory from 7000 to 8FA3 was not modified however.

NOTE: it is good practice to VIEW a file before LOADing it to
verify the module will not load over TASMON.

WRITING OUT A SYSTEM TAPE OR CMD DISK FILE

To write a file out press "W" (for WRITE) followed by a "T" for
tape or a "D" for disk. The starting, ending and entry addresses
are entered next in that order. Lastly, the filename is entered,
up to six characters for tape or a DOS filename for disk. VWhen
entering a file name the SHIFT BACKSPACE does not function. The

BACKSPACE must be repeatedly pressed or held down to get to the
beginning of the line.

If the above block move example was to be written to disk the
following would be keyed in:

¥ D 6350 6C08 6BFB Write to disk starting at 6350,

FILE/CMD ending at 6C08 with an entry of
6BFB. Use the file name
"FILE/CMD"

DISASSEMBLED OUTPUT TO DISK OR TAPE

The OUTPUT command will disassemble to disk or tape as an
Editor/Assembler source file. The code sent to disk or tape is
also echoed on the screen. To execute this command press the "O"
key (for OUTPUT), a "D" for disk or "T" for tape, the starting,
ending and transfer addresses of the dump. A filename is also

13

entered.

A symbol table is generated by TASMON to ease the reading of the
dump. The symbols are created for all 16 bit addresses between
the starting and ending addresses specified. This table starts
at the high memory pointer located at 4049-404A and builds
downward in memory. If there is a program running in high memory
make sure this pointer is set to such a value that the program
will be protected. If TASMON is moved to high memory there will
be about 100 bytes free for the symbol table. The symbol table
uses two bytes per label. If large amounts of memory are being
disassembled, there could be a pause of several seconds while the
symbol table is being generated.

The starting address given will be used as the address of the ORG
pseudo~op. The ending address is simply where output will halt.
The transfer address is the address placed on the END pseudo-op.

Any text messages dumped to disk will be sent as 2Z-80
instructions. Therefore, some work may be required by the user
to generate the proper source code in this case.

The source is written out with line numbers of 00000. Therefore,

the first command executed from Editor/Assembler after the source
has been loaded in would be RENUMBER (i.e. N 100,10).

The command format goes as follows:

0 D FOOO FO35 FO10 Output to disk starting at F00O,
ending at F035, and entry address
of F010.

TEST/ASM Use the file name "TEST/ASM"

The symbols TASMON generates are simply the address 1in question
preceeded by a "Z". For example, a typical label would be:

Z0046H CALL Z002BH

Bad symbols can be generated in some instances where text
messages and stall or counter values are used. For example, if
the following code was in memory:

8000 21
8001 00
8002 1F
8003 10
8004 FD

The bytes at 8000 and 8001 could be the last two bytes of a text
message. The instruction at 8002 is a RRA. The instruction at
8003 1is a DJNZ and the offset at 8004 refers back to 8002.

However, when this code is disassembled out it would appear as
follows:

14

LD HL,1FOOH
DJNZ Z8002H

The symbol "Z8002H" is never defined since the instruction at
8002 was incorrectly disassembled as the most significant byte of
the "LD HL,nn" 1instruction at 8000. The solution for this
problem 1is to change the symbol "Z8002H" to the address '"8002H".
The source code will still appear incorrect but reassembling the
source will give correct results.

NOTE: 1if a disk error ever occurs with TASMON, an error message
and the TRSDOS error code (in hex) is printed. Refer to appendix
A at the end of this manual for a list of error messages.

BREAKPOINTS

TASMON gives the user control over 9 breakpoints. A breakpoint
allows a machine language program to be stopped at a
predetermined spot and transfer control back to TASMON. For
example, if a breakpoint was set at 8000 and the user's program

executed the instruction at this address, control would bhe
returned to TASMON.

Breakpoints are labeled 1-9. A three byte breakpoint (CALL nn)
is used to intercept the user's program.

One unique feature of TASMON is that the number of times a
breakpoint 1is executed before halting may be set for each
breakpoint.

SET AND DISPLAY BREAKPOINTS

To set a breakpoint press "B" followed by the breakpoint number
{(1-9) and a four digit value. Breakpoints may be placed anywhere
in memory, RAM or ROM. Breakpoints in RCM will not function when
using the GO command (discussed below), but they do work when
using the TRACE command. TASMON sets a breakpoint to 0000 in
order to clear it.

To display the breakpoints press "B" and hit ENTER. Three rows
of three sets of 4 and 2 digit hex values will be printed. These
correspond to the values and number of executions for breakpoints
1, 2, 3, etc. For example:

B 8 BO9E sets breakpoint B to 809E
B <ENTER> displays all breakpoints
41F3 01 0000 01 0000 01
7802 01 0000 01 0000 01
0000 01 809E 18 00600 01

15

Breakpoint 1 is set at 41F3 and the execution number 1is 1,

breakpoint 4 is set at 7802 and the execution number is 1,
breakpoint 8 is set at 809E and the execution number is 18, and
all others are cleared.

NOTE: Care should be taken so that breakpoints do not overlap.
For example, breakpoints must differ in address by at least three

to function correctly. Suppose a breakpoint is set at 8000 and
another at 8001. They will not function correctly since the

three byte breakpoints will overlap (8000-8002 and 8001-8003):
Brkpnt 1 Brkpnt 2

8000 CALL

8001 1sb CALL
8002 msh 1sb

8003 msb

SET NUMBER OF EXECUTIONS BEFORE BREAK

The "N" or "Number of executions before break" command allows
setting the number of times a breakpoint is executed before the
breakpoint is acknowledged. The default value is 0l. This means
execution will halt if the breakpoint is executed 1 time.

The formats of the command are:

Nnh Set the number of executions for breakpoint n
to "h" (a value from 00-FF where 00 is 256
decimal).

NI Set the number of executions for all breakpoints

to 01 (or the normal number of executions).

1=

(ENTER> Set all breakpoints back to their set values.
This value will be 01 unless changed by the
"N n h" command.

The number of executions value is used only by the TRACE and GO
commands (both discussed below), not by the single steppers. The
value is decremented each time the breakpoint is executed. When
this value reaches zero, execution halts and all execution
numbers are reset to their original values (01 unless changed by

the "N n h" command). The "N <ENTER>" command will also reset
the values.

Most users probably will not use this command. If the execution

number is left at 01, breakpoints will function as with any other
monitor program.

16

CLEAR BREAKPOINTS

To clear a single breakpoint press "C" followed by the breakpoint
number (1-9). To clear all breakpoints type "C" followed hy
ENTER. For example:

c1 will clear breakpoint 1.
C <ENTER> will clear all breakpoints.

INSTRUCTION STEP COMMANDS

There are two types of step commands in TASMON, manual and
automatic. Each will start at the location pointed to by the
user's PC register and return control to TASMON and display the
registers. The PC register should contain the execute address of
the user's program.

SINGLE STEP

There are two types of single steppers in TASMON:
1) step next instruction with CALLs executed in full.
2) step next instruction with CALLs stepped through.

The first type of single stepper will execute one instruction
with CALLs executed in one step. To execute this command hit the
DOWN ARROW key. The user's registers will be redisplayed upon
return to TASMON. If a breakpoint is set within a CALL executed
with this stepper, the CALL will be executed only up to the point
of the break. NOTE: a CALL to ROM will not halt at a breakpoint
within the CALL with this stepper.

The second type of single stepper will execute one instruction

with CALLs stepped through one instruction at a time. This
command is executed by pressing the "I" key.

A unique feature of TASMON is that ROM instructions may be single
stepped by either type of single stepper. It is recommended that
the DOWN ARROW type (CALLs executed in full) be used since some
ROM routines can take quite a while to execute.

SINGLE STEPPING RESTARTS

The Z-80 "RST" command is a special single byte CALL. RESTARTS
may be "stepped through” or "executed in full." The DOWN ARROW
and "I" keys are still used to step restarts, except the "J" or
JUMP THROUGH RESTARTS command is used to determine how they are
handled. If pressing the "J" key displays a DOWN ARROW, restarts
will be executed in full. 1If pressing the '"J" key displays an
"I", restarts will bhe stepped through. For example:

I Step through restarts mode is on
2 Execute restarts in full mode is on

17

Jesle

The status of restart stepping has no effect on how CALLs are

handled. For example, CALLs can be stepped through while
restarts are executed in full.

TRACE COMMAND

The Trace command will continuously single step the user's
program and redisplay his registers. To invoke this command
press the "T'" key. Next, enter the type of stepping desired. A
DOWN ARROVW is used to execute CALLs in full and an "I" for step
through CALLs. For example:

TI starts TRACE with calls stepped through

The step rate can be varied from about 2 seconds per instruction
to 15 1instructions per second by pressing the 0-7 keys while
TRACE is executing (7 is the fastest step rate). Everytiﬁe TRACE
is entered the step rate is reset to one instruction per second.

Trace execution is halted by one of four ways:

1) One of the 9 user breakpoints is hit and the
execution number is decremented to zero.

2) The BREAK key is depressed (control returns to
command mode).

3) The SPACE BAR is depressed (execution pauses until
the SPACE BAR is depressed again).

4) A "RET" instruction was executed while the "RETURN
BREAKPOINT'" option was on.

At times the user starts stepping through a CALL. When all the
information needed is found, all the user wants to do is get out
of the call. The "RETURN BREAKPOINT" option is a way of getting
out of the CALL quickly. By pressing the "R" key while tracing,
the "RETURN BREAKPCINT" option is turned on. When this option is
on, the next Z-80 "RET" or "RET cc" where the condition was met
will halt TRACE execution. This option 1is 1like putting a
"floating" breakpoint on "RET" instructions. The only way to
turn this option off is to exit and reenter TRACE.

TASMON allows tracing through ROM if desired (some of the
routines take quite a while to finish) and breakpoints in ROM are

honored. Some special conditions must be met for breakpoints in
ROM to halt the program however.

If a CALL 1is used and a breakpoint is set somewhere within the
ROM CALL, tracing with CALLs executed in full will not halt on
the breakpoint. Tracing with CALLs stepped through will halt if
the breakpoint is hit.

18

For breakpoints in ROM to function with the TRACE command, the
address of the breakpoint must be single stepped. When stepping
through a CALL, all instructions of the CALL are single stepped.
When executing CALLs in full, the CALL 1is executed in its
entirety in one step. Breakpoints can not actually be loaded
into ROM, only RAM. Therefore, tracing with CALLs stepped
through is required to honor breakpoints within CALLs toc ROM.

GO COMMAND
The GO command will start the user's program at full speed.

The only way to halt the user's program is for a breakpoint to be
executed until the execution number is decremented to zero.

Since breakpoints can not really be set in ROM, GO will not halt
execution in ROM.

To use the GO command, press a "G" followed by either a hex value
where execution is to start or the ENTER key (execution starts at
the user's PC register). For example:

G 8000 will start execution at 8000
G <ENTER> will start execution at the PC register.

To continue on from a breakpoint with GO do either of the
following:

1) Single step over the instruction where the break
occured.

2) Clear the breakpoint where the break occured then use
the GO command to continue on.

One of these two steps 1is required since GOing at a breakpoint
address simply returns control to TASMON with none of the user's
program executed. Single stepping over the instruction at the
break address then allows the GO command to continue on normally
until the next breakpoint is executed.

NOTE: More than one instruction may need to be single stepped
since a breakpoint uses three bytes. If GO execution is resumed
in the middle of a breakpoint results can be unpredictable.

If the number of executions for a breakpoint is set greater than
one, the GO command will execute part of the user's program at
full speed and single step part of it (single step enough of it
to make sure execution does not resume in the middle of a
breakpoint). The BREAK key may be depressed to halt execution
while single stepping if desired.

NOTE: TASMON does not allow an illegal Z-80 opcode to be single

19

stepped or traced. Bad code is disassembled as "DEFBeh." To run
this type of code, a breakpoint must be set after the instruction
and the GO command used to step it if so desired.

KEEP SCREEN

TASMON uses columns 40 to 63 for its displays. However, some
user programs may also use these locations. The "K" or "KEEP
SCREEN" command may be used to save the screen before TASMON
affects it. When the "KEEP SCREEN" option is enabled, the user's
last screen will be redisplayed before single stepping, tracing
or GOing. On return from one of the stepping commands the screen
will be resaved. There are four formats of the "K' command as
follows:

1) K start address save screen at "start address"
2) K <ENTER> display user's screen

3) KY turn KEEP SCREEN on

4) KN turn KEEP SCREEN off

The first option, "K start address'", is used to 1initialize the
KEEP SCREEN command. The four digit value "start address" is the
starting address of a 1024 byte buffer in memory where the user's
screen 1is to be saved. When the location 1s entered the screen
memory is set to a clear screen of 1024 spaces (20H). The ASCII
option of the MODIFY MEMORY command may be used to set the screen
to some initial condition.

The second option, "K <ENTER>", will bring the user's saved
screen back to the video display and leave it there as long as
the ENTER key is held down. This option allows for a quick
review of the user's display.

The third option, "K Y", is used to turn the KEEP SCREEN option
on. Whenever a program is stepped with this option on, the
user's screen will be redisplayed and saved continuously. TASMON
will not affect the user's screen at all.

The forth option, "K N", is used to turn the KEEP SCREEN option
off. The current saved screen 1is not changed by turning the
command off.

The screen buffer may be cleared by the "K start address" option
or the ZERO MEMORY command. Example inputs are:

K F000 Set user's screen buffer at FOOO-F3FF
and clear the buffer (make it all spaces).
K <ENTER?> Display the current saved screen.
KY Turn the KEEP SCREEN command on.
KN Turn the KEEP SCREEN command off.

20

GENERAL COMMENTS

A commented listing of the source code 1is available from the
author for $15. The author's address is:

Bruce G. Hansen
220 Iris Street
Lansing, MI 48917
(517) 323-2260

21

SINGLE STEPPING THROUGH BASIC

A powerful feature of TASMON is that the BASIC interpreter
written by Microsoft may be single stepped.

This allows a BASIC program to be entered from the keyboard and
RUN. TASMON will step through the ROM routines of the BASIC
interpreter to perform these tasks.

NOTE: Disk BASIC seems to have problems when single stepping in
the manner described below.

The first step is to get BASIC and TASMON co-resident in memory.
This can be done a few ways:

One way is to enter LEVEL II BASIC and set a MEMORY SIZE high
enough to protect TASMON. Next, load TASMON via the SYSTEM
command. Since TASMON takes about 8K of memory, the memory sizes
should be:

16K machine = 24575
32K machine = 40959
48K machine = 57343

Disk users can load TASMON from DOS and enter LEVEL II BASIC by
pressing the BREAK key and RESET button. Next, enter the MEMORY
SIZE.

TASMON must be entered next. To do this type:

>SYSTEM
*7 Jstart address

Where "start address" is the starting address of TASMON.

The next step is to set a breakpoint at 41B2. This the address
of a CALL used by ROM to return to BASIC command mode. If this
breakpoint is not set, any error from BASIC such as a SYNTAX or
MISSING OPERAND error will cause TASMON to be exited.

If TASMON is ever exited in this manner simply re—enter the
monitor by typing:

>SYSTEM
*? [start address

The state of the Z-80 registers will remain unchanged.
Therefore, stepping can continue from where TASMON was exited.

RESTARTS must be set to "step through" mode. Press the "J" key
until this mode is enabled. The "step through" mode is on when
an "I" is displayed after the "J" pressed by the user.

22

Now BASIC can be either single stepped via the DOWN ARROW key or
"I" key or TRACE mode.

If TRACE mode is selected with CALLs executed in full and the "7"
speed option is selected (fastest TRACE step rate), BASIC will
operate about 5000 times slower than normal.

It CALLs are stepped through, keyboard characters must be held
down until the keyboard driver routine used by BASIC scans
through them. After this there is a significant stall to
eliminate keybounce at 0060. For these reasons CALLs executed in
full is recommended for stepping BASIC.

The re-entry address of BASIC is 1A19. Modify the PC register to
this address before stepping BASIC as follow:

R PC 1A19

After TASMON has been patched in, BASIC will function normally.

Some BASIC commands will not function correctly. For example,
none of the tape or disk input/output commands will function
correctly.

The breakpoint at 41B2 will be executed each time the ENTER key
is pressed. This may be an irritation, but the breakpoint is
required or stepping BASIC will not function correctly.

When the breakpoint at 41B2 is executed, simply continue tracing
or single stepping by pressing the appropriate command key(s).
For example, to continue with TRACE mode type:

T4

Pressing the BREAK key will exit BASIC and return to TASMON. To
continue stepping BASIC, simply continue tracing or single
stepping by pressing the appropriate command keys.

Refer to SESSION 6 for more information and an example of single
stepping a BASIC program.

23

SAMPLE SESSIONS

The following sample sessions are examples using TASMON's
commands.

SESSION 1 ~ Load TASMON, relocate it to high memory and write it
back out to disk. :

The distributed version of TASMON loads from 6000-7FFF with an
entry point of 6000. By distributing the program in this form,
only one version is needed for a 16K, 32K or 48K machine.
However, the owner of a 48K machine will probably want TASMON to

run at high memory or EOOO-FFFF. To do this enter the following
commands:

From DOS enter TASMON by typing:
TASMON
The Z-80 registers and user prompt will be displayed.

Next use the RELOCATE command to move the program to memory
starting at EO00. The format is:

X 6000 7FFF E0Q0 which relocates memory from 6000-
7FFF to memory starting at EO00O.

Now TASMON resides at 68000-7FFF and at EOOO-FFFF. To save the
high memory version to disk use the WRITE command. The format
is:

¥ D E000 FFFF E000
HTASMON/CMD

Which dumps memory from E000~FFFF with a transfer address of EOCOO
to disk with the file name "HTASMON/CMD".

Whenever "HTASMON" is typed in from DOS the high memory version
of the program will be executed.

24

SESSION 2 - Load Small System Software's BARRICADE game program

from tape, relocate it to high memory and write it back out to
disk.

It is assumed in this example that TASMON resides in memory from
8000-9FFF.

To load BARRICADE enter the following command:

L T 2000 Load a SYSTEM tape with an offset of 2000
6350 6D6F 6350

The offset of 2000 is needed since BARRICADE loads over NOS. The
starting, ending and transfer addresses are 6350, 6D6F and 6350
respectively.

The next step 1is to enter LEVEL II BASIC in a non-DOS
environment. To do this hold down the BREAK key and hit the
RESET button.

Now reenter TASMON by keying in the following:
>SYSTEM
*? [32768 Assuming TASMON starts at B000H (32768
decimal). This address must be the same as
the starting address of TASMON.

Now block move the program back down to 1its normal execution
location with the BLOCK MOVE "Y' command as follows:

Y 6350 6D6F 4350

The 4350 destination address was derived by subtraction the load
offset (2000) from the starting address (6350).

BARRICADE now resides at its normal addresses. To relocate it to
memory from 7350-7D6F enter the following:

X 4350 4D6F 7350

This will relocate memory from 4350-4D6F to memory starting at
7350. As a result, a relocated high memory version of BARRICADE
is at memory from 7350-7D6F. The entry address of the relocated
module is 7350. This is derived by adding the relocate offset
of 3000 (7350-4350) to the normal entry address of 4350.

Now reenter DOS by hitting the RESET button again. To reenter
TASMON type in:

TASMON
The final step is to write the relocated version of the program

to disk. The VWRITE command 1is used to accomplish this as
follows:

25

W D 7350 7D6F 7350
BARRTC/CMD

Memory from 7350-7D6F was written to disk under the file name
"BARRIC/CMD" with an entry address of 7350.

To run the relocated version of BARRICADE type the file name of
the new module from DOS.

26

SESSION 3 - Load a machine language file from disk and execute it
by single stepping, tracing and GOing.

The short program used in this example appears as follows:

00100 ORG 5F0CH ;START OF PROGRAM
00110 LD HL , TEXT ;START OF TEXT
00120 LOCP LD A, (HL) ;GET A BYTE

00130 INC HL ;POINT TO NEXT BYTE
00140 CP 0 ;END OF MESSAGE?
00150 JR Z,STOP ;JUMP IF END

00160 CALL 033AH ;WRITE BYTE

00170 JR LOOP ;GET ANOTHER BYTE
00180 STOP JP STOP ;KEEP ON JUMPING
00190 TEXT DEFM 'THIS IS A TEST' ; TEXT MESSAGE

00200 DEFB ODH ;CARRIAGE RETURN
00210 DEFB 00 ;MESSAGE DELIMITER
00220 END 5F00H ;ENTRY POINT 1S S5F00

The purpose of this program is to write a message on the screen.
In this case the message is "THIS IS A TEST". For this session
TASMON is assumed to be in memory from 6000-7FFF and the short
program given above 1is saved on disk under the file name
"PEST/CMD". The distributed copy of TASMON has both of these
files on the master diskette with the indicated load addresses.

The first step is to load the file into memory. The LOAD command
is used for this by Kkeying in:

L D <ENTER>
TEST/CMD
5F00 5F20 5FO00

The file "TEST/CMD" loaded from 5F00-5F20 with an entry point of
5F00.

The first time through the program we will simply single step it.
The first step is to load the PC register with the starting
address of the program or 5F00. Use the REPLACE command to do
this:

R PC 5F00

To aid in viewing the program, disassemble the program to the
screen. This is done by entering:

D 5F00

-

The first fifteen instructions of the program will be displayed
on the left side of the screen. Now hit the BREAK key to get
back to command mode. The disassembled code and the Z-80
registers will be displayed. The screen should appear as
feollows:

27

5F00 21115F LD HL,5F11 LD HL,5F11

5F03 7E LD A, (HL) IX 4c4l1 1Y 094C
5F04 23 INC HL AF' 4B43 BC' 4353
5F05 FEOO CP 00 DE' AA52 HL' OBOA
5F07 2805 JR Z,5FOE AF OOFF BC 4C44
5F09 CD3A03 CALL 033A DE 4C48 HL A070
5F0C 18F5 JR 5F03 SP 41E4 PC 5F00
5FOE C30E5F Jp 5FOE SZ1HIPNC (HL) 4C
5F11 54 LD D,H -

5F12 48 LD C,B

5F13 49 LD c,C

5F14 53 LD D,E

5F15 2049 JR NZ,5F60

5F17 53 LD D,E

5F18 2041 JR NZ,5F5B

Notice that the labels used in the source code have been changed

to actual addresses, and the text message appears as Z~80
instructions.

Hit the BREAK key to exit the DISASSEMBLE mode and reenter
TASMON's command mode.

To single step the instruction at the PC register or 5F00 (which
is a LD HL,5F11) hit the DOWN ARROW or "I" key. The HL register
pair will now have 5F11 in it, PC equals 5F03 and the instruction
at S5F03 (or PC) is LD A, (HL).

Single step this instruction. The A register will hold 54 or an
ASCII "T", the first character of the message. PC will now be
5F04. The next instruction is "INC HL". 8Single step PC again.
HL equals 5F12 or the address of the next character of the
nessage.

PC now holds 5F05. The instruction there 1is a CP 00. This
instruction checks for the end of the message which is a 00 byte.
Single step this instruction. Notice that the Z-80 flags changed
(the Z flag will not be set because 54 does not equal 00).

The next instruction 1is JR Z,5FOE which is where the program
Jumps if the message is through being printed.

The next instruction is CALL 033A. PC points to this instruction
by holding 5F09. This is a ROM CALL to display the character in
the A register on the screen. To single step this instruction
hit the DOWN ARROW key. If the "I" key is depressed the CALL
will be stepped through one instruction at a time. You may want
to try this just to see how ROM writes the character on the
screen. The routine does take some time to step through however.

After the byte is displayed on the screen the program jumps up to
get another character from the message. The process repeats

28

until the entire message is displayed at which time the program
merely jumps upon itself in an endless loop.

Single stepping through the program by hand can take some time,
but it is necessary when a program may have bugs present. The
TRACE command can be used to single step through a section of
code at a higher rate of speed while still displaying the Z-80
registers.

Before running the TRACE command change the PC register back to
the start of the program by entering:

R PC 5F00

Now start TRACE by pressing the "T" key. Next hit the DOWN ARROW
key to select tracing with CALLs executed in full.

The program will single step at about one instruction per second.
Press the "4" key. Notice that the program is executing a little

faster. The speed control keys are 0-7 where 7 is the fastest
rate.

Press the BREAK key after the entire message has been printed.
The entire program was just traced through. But suppose we want
to stop the program every time it checks for the end of the
message at S5F05 (CP 00). To do this a BREAKPOINT can be set. A
breakpoint is analogous to a BASIC STOP command.

Since we want to stop the program at 5F05, a breakpoint will be
placed there. To set a breakpoint type:

B 1 5F05 which sets breakpoint 1 at 5F0S5.

- — ———

Now set the PC register back to the start of the program:
R PC 5F00

Start TRACE again by entering:

T &

The program stopped when PC was b5F05 which was where our
breakpoint was set. Up to nine breakpoints can be set in this
manner.

Suppose we want to display the next five characters on the screen
without having breakpoint 1 halt execution before each character
1s displayed.

To do this the number of executlons of breakpoint 1 must be set
to 5 as follows:

N 1 05 Set number of executions for breakpoint 1 to 05.

29

Now continue traclng by entering:

T ¥

The first five <characters were printed on the screen and the
program stopped at the breakpoint again. To clear that
breakpoint type:

C1 which clears breakpoint 1

If tracing is continued at this point execution will not halt
until the BREAK key is depressed.

The CALL at 5F09 appears as follows in ROM:

033A PUSH DE

033B CALL 0033
033E PUSH AF

033F CALL 0348
0342 LD (40A6),A
0345 POP AF

0346 POP DE

0347 RET

Suppose we want to observe the registers for some reason when PC
is 033B. In order to observe the program at this point a
breakpoint in ROM must be set. To do this enter:

B 1 033B which sets breakpoint 1 at 033B

The number of execution for breakpoint 1 was previously set to
05. To set this and every other execution number to 01 enter:

NI Initialize execution numbers to 01
Before tracing through the program the PC register must be set to
the beginning of the program:

R PC 5F00
Breakpoints in ROM can only be 'seen'" by TASMON if the
instruction where the breakpoint is set is single stepped. For
example, if the following code was present in ROM:

1000 LD A,S
1002 LD B,6
1004 RET

And a breakpoint was set at 1002, the breakpoint would halt the
program only if the instruction at 1002 was single stepped.

If a CALL 1000 instruction was executed the breakpoint would not
halt the program if CALLs were executed in full (the instruction

n

at 1002 would not be single stepped), but it would halt execution

if CALLs were stepped through {(each instruction of the CALL is
single stepped).

Therefore, for this breakpoint to work on TRACE we must specifty
CALLs stepped through as follows:

I1

The program will halt when PC equals 033B. Suppose we want to
step through instructions residing at 033B-0341 with CALLs

executed in full. To do this set another breakpoint at 0342, or
one instruction after the CALL 0348:

B 2 0342 which sets breakpoint 2 at 0342
Now execute TRACE with CALLs executed in full:
T $

The program will halt at 0342 which was where our breakpoint was
set. If tracing was continued with CALLs stepped through the
breakpoint at 033B would halt the program. If CALLs are executed

in full neither breakpoint will not halt the program for reasons
discussed above.

The third way of executing the user's program is the GO command.
This command will run the program at full speed. The only way to
halt the program when using GO is to hit a breakpoint. If we
want to run the entire program through at full speed a breakpoint
should ‘be set at 5FOE, or the ending instruction of the program.
5FOE contains a JP 5FOE which is just an endless loop where the
program jumps after the message is through being displayed. To
set the breakpoint enter:

B 3 5F0E which sets breakpoint 3 at S5FOE

To start the program using the GO command key in:

G S5F00

—

The message should be printed on the screen instantaneously and
control should be returned to TASMON. If the breakpoint at 5FOE

was not set, execution would not cease and the program would jump
upon itself until the RESET button was pressed.

31

SESSION 4 - Write the TEST/CMD program out to disk as an
Editor/Assembler source file.

The "0" or OUTPUT command is used to accomplish this task.
The first step is to load "TEST/CMD'" into memory by entering:

L D <ENTER>
TEST/CMD
5F00 5F20 S5F00

Next, enter the OUTPUT command as follows:

O D 5F00 5F20 5F00
TEST

The disassembly will be written out to disk with the file name
TEST/ASM starting at 5F00 and ending at 5F20 with a transfer
address of 5F00. Now exit TASMON by keying in:

E <ENTER>

The system will reboot DOS. Suppose you have Apparat's or
MISOSYS's Editor/Assemblers. If you do not have either, I highly
recommend the purchase of the MISOSYS version called DISKMOD
(which requires the cassette E/A sold by Radio Shack). Enter the
E/A by typing its file name from DOS.

Next, load TEST/ASM with the "LD" command of Editor/Assembler (or
similiar command if using a different E/A). As stated previously
under the explanation of the OUPUT command, the first command to
enter 1is a RENUMBER command. TASMON writes out the file with
line numbers of 00000 so this command is required. To do this
enter:

N 100,10 which renumbers the program in increments of
10 with a starting line number of 100.

The source listing should be:

00100 ORG 5FO0H
00110 LD HL,Z5F11H
00120 Z5F03H LD A, (HL)
00130 INC HL

00140 CP OOH
00150 JR Z,Z5FOEH
00160 CALL 033AH
00170 JR Z5F03H
00180 Z5FO0EH JP Z5FOEH
00190 Z5F11H LD D,H
00200 LD C,B
00210 LD c,C
00220 LD D,E
00230 JR NZ,5F60H

32

00240 LD D,E

00250 JR NZ,5F5BH
00260 JR NZ,5F70H
00270 LD B,L
00280 LD D,E
00290 LD D,H
00300 DEC C

00310 NOP

00320 END 5FOOH

Notice that the source code here is the same at the original
source code of "TEST/CMD" except that the labels are different
and the text message now appears as 2-80 instructions. Text
messages are generally easy to convert from Z-80 instructions
back to text. This is done by converting the instructions to
numbers. Anyone who has hand assembled a program has done this.
The only problem exists when spaces are present in the text. The
code for a space 1s 20H, which also happens to be the Z-80
instruction for a "JR NZ,e". The problem does not exist in
finding the space, but in finding the character after the space.
The character after the space is the index of the relative jump
minus two.

To determine the character after the space (or JR NZ) at line
00230 do the following:

Start counting instructions starting at the last known address.
In this case the last know address is 5F11 (or Z5F11H - TASMON
simply puts a "Z" in front of the address when making it a
label). By doing this it is determined that the address of the
JR N2Z,5F60H instruction in line 00230 is 5F15. We add one to the
last known address because instructions such as "LD D,H" are only
one byte long. However, if a '"JR NZ,e" instruction is
encountered, two must be added to the address since this
instruction is two bytes long.

Now subtract 5F15 from 5F60 or more generally, subtract the
address of the jump instruction from the destination of the jump.
The result of this subtraction in our case is 4BH.

Now subtract two more from this value. This subraction Iis
necessary since the index of a relative jump is stored in memory
as the index minus two. Subtracting two from 4BH gives 49H,
which is an ASCII "I".

The instructions such as "LD C,B" must be converted back to ASCII
by refering to the Z-80 instruction tables in a book such as
Radio Shack's TRS-80 ASSEMBLY LANGUAGE PROGRAMMING.

An easier way to fix messages is to view the program with an
ASCII dump from TASMON and record the addresses of the text
messages. If a printer is available, pressing the "*'" key will
dump the screen contents to the printer thus giving a hardcopy
listing of the ASCII dump.

33

SESSION 5 - Load a CMD disk file into memory and write it out
as a SYSTEM tape.®

The first step is to load the disk file into memory. It is good
practice to VIEW the file first. 1In this example TASMON |is
assumed to reside in memory from EQOO-FFFF.

To VIEW the file enter:

VD
NoVa/cMD
5C00 7FEO S5FOB

The disk file "NOVA/CMD" was VIEWed and the starting, ending and
transfer addresses were found to be 5C00, 7FE0 and O5FOB
respectively. Since TASMON resides from EOOO-FFFF the module
will not interfer with TASMON. However, if the module would
interfer with TASMON, the RELOCATE command could be used to move

TASMON to a location 1in memory where the module would not
overlap.

The next step is to load the module into memory:

L D <ENTER>

NOVA/CMD
SCEUL7FEO 5F0B

The last step is to write the SYSTEM tape out using the same
starting, ending and transfer addresses of the disk file:

W T 5C00 7FEO 5FOB
Nova

The SYSTEM tape was written out with the file name YNOVA".

34

SESSION 6 -~ Use the TRACE command to step through the start up
procedure for ROM and execute a BASIC program.

In this example TASMON must reside in memory from 6000-7FFF and
if an expansion interface is connected to the keyboard, the EI
must be turned off. The reason for turning the EI off is that
the ROM initialization routine checks if a disk system is
present. In our example we do not wish this.

The first step is to set the PC register to 0000:

R PC 0000

Now set RESTARTS to stepped through mode by pressing the "J" key:
J I

Now start TRACE by typing:
T ¥

The initialization routine for LEVEL II ROM is now being traced.

The speed of initialization can be sped up by pressing the "7"
key.

After a long initialization process, the MEMORY SIZE message will
appear. Enter the following,

MEMORY SIZE ? 24575 <ENTER>

The memory size was set at 24575 to protect TASMON.
We are now tracing through LEVEL II BASIC. Enter the following
program:

10 PRINT "START"

20 FOR I = 1 TO 5

30 PRINT 1; 1/2; I*2
40 NEXT I

50 DPRINT "DONE"

60 END

Now type:
LIST
The BASIC program should list upon the screen. Notice that

TASMON is continually redisplaying the registers. This short
program may even be RUN from TASMON's TRACE mode.

If a BASIC error occurs, TASMON will be exited completely. To
fix this condition a breakpoint must be set at 41B2. Do this by
entering:

35

B 1 41B2

To exit BASIC and return to TASMON press the BREAK key. This
must be done before any TASMON command may be entered.

The breakpoint at 41B2 will occasionally cause TASMON to be
reentered. To continue stepping BASIC simply restart tracing as
follows:

T &

If a BASIC program being run is to be halted and control returned
to the BASIC command mode, press the BREAK key and change the PC
register to 1A19 as follows:

R PC 1419

Then continue tracing.

Let's start with a fresh screen by pressing the CLEAR key.

Now start tracing BASIC if not alfeady doing so.

List the program again by typing:

LIST

The program should list on the screen.

TOIRUN the program type:
RUN

The message "START" will be printed on the screen followed by
five rows of three numbers and the "END" message.

36

SESSION 7 - Relocate GSF, a utility program by RACET COMPUTES

GSF is a utility program with routines to scroll the screen Iin
any direction, reverse graphics, draw graphics lines, read/write
tape Dblocks at high speed and other commands. The most
‘noteworthy of the commands is the multiple variable sort.

GSF is a fine program but has one fault, it resides at high
memory and provides no way to move itself down in memory.

Other programs may also need to reside at high memory thus

interfering with GSF. The solution is to relocate GSF to a new
lower loading point in memory.

GSF uses a vectoring technique which fools TASMON's RELOCATE
command. Jump addresses for each routine are stored in a table
instead of actual Z2-80 jump instructions. GSF stores this table
in the following format:

1st byte number of arguments for this routine
2nd and 3rd bytes address of this routine

This jump table is stored at these locations for the three
versions of GSF:

Memory version start of table end of table
16K TF87 7FFE
32K BF87 BFFE
48K FF87 FFFE

GSF will be relocated normally but the jump table addresses must
be changed by hand. The procedure goes as follows:

Suppose TASMON resides in memory from B8000-9FFF and the 48K
version of GSF is stored on disk with the filename '"GSF48/0BJ".

The first step is to load GSF into memory:

L D <ENTER>
GSF48/0BJ
F2D8 FFFF FE8O

GSF48/0BJ 1loads in memory from F2D8 to FFFF. In our example we

would like GSF to end at FED2 instead of FFFF. We must first
find the program offset by entering:

S FFFF FED2 - 012D

The new starting and entry addresses are found by entering:

F1AB new starting address
FD53 new entry address

F2D8 012D
FE80 012

o

{th

itaitn

37

Now GSF can be relocated to its new position in memory starting
at F1lAB:

X F2D8 FFFF F1AB relocate memory from F2D8 to
FFFF to memory starting at F1AB

The starting address of the jump table of the lower memory
version of GSF must be found by subtracting the offset from the
original table location: '

S FF87 012D - FES5A

The original jump table must be copied to the new lower memory
version of GSF. The jump table may be incorrectly interpreted
when relocated since it is not normal Z-80 code. As a result it
can not be assumed that information saved at the lower memory GSF
is valid. Table data lies from FF87 to FFFE for the loaded
version of GSF as indicated by the above table. This data is
copied to the new lower version as follows:

Y FF87 FFFE FESA

To view the jump table enter:

H FESA

The jump table will be displayed in hex on the left side of the
screen. The display should appear as follows:

FESA 02 CC FA 02 97 FA 03 E9
FE62 FA 03 7C FB 02 C5 FB 00
FE6A D5 FB 00 EB FB 00 01 FC
FE72 00 1A FC 02 33 FC 03 46
FE7A FC 02 4A FD 03 A7 FD 03
FE82 17 FE 03 52 FE 01 62 FE
FE8A 01 7A FE 03 FE F4 04 OC
FES2 F5 02 16 F5 02 36 F5 03
FE9A 93 F5 04 99 F5 01 FC F2
FEA2 00 FF 00 FF 00 FF 00 FF
FEAA 00 FF 00 FF 00 FF 00 FF
FEB2 00 FF 00 FF 00 FF 00 FF
FEBA 00 FF 00 FF 00 FF 00 FF
FECZ 00 FF 00 FF 00 FF 00 FF
FECA 00 FF 00 FF 00 FF 00 FF

Hit the BREAK key to reenter command mode.
The jump table is a collection of three byte values as described

above. The first set of three is at FE5A through FE5C. The

bytes at these addresses are 02, CC and FA respectively. These
bytes are interpreted as:

02 Number of arguments for thils routine

38

FACC The address of this routine (CC FA is the Z-80
format for the address FACC)

The next step to relocating GSF is to change all of the jump
addresses to their correct values. The correct value is found by

subtracting the offset from the original value. The first one is
done as follows:

S FACC 012D - F99F

Now the address FACC must be replaced by F99F. This is done by
modifying memory at the jump table location of FACC at FES5B:

M H FE5B CC 9F
FE5C FA F9
FE5D 02 <BREAK>

All of the other routines are modified in a similiar manner. The
table ends at FEAl or where the 00 and FF values start appearing.
After all of the entries have been modified the new version of

GSF may be saved to disk. The starting, ending and entry
addresses determined above were F1AB, FED2 and FD53 respectively:

¥ D F1AB FED2 FD53
NEWGSF/0BJ

The new version of GSF may be loaded from DOS by typing:
LOAD NEWGSF/OBJ <ENTER>

When BASIC is entered the memory size must be set to one less
than the starting address of GSF (assuming GSF is the lowest high

memory program). In our example this value is 61866 or FlAB
minus one.

The DEFUSR statement used to enter GSF uses the entry address of
the program. In our example this is FD53. The DEFUSR would be
entered as follows:

DEFUSR= &HFD53

The new relocated version of GSF will function exactly as the
normal version.

39

APPENDIX A
PDOS ERROR MESSAGES

Error number Error description
00 No error
01 Parity error during header read
02 Seek error during read
03 Lost data during read
04 Parity error during read
05 Data record not found during read
06 Attempt to read system data record
07 Attempt to read system data record
08 Device not available
09 Parity error during header write
0A Seek error during write
OB Lost data during write
oC Parity error during write
oD Data record not found during write
OE Write fault on disk drive
OF Write protected diskette
10 Illegal logical file number (bad DCB)
11 Directory read error
12 Directory write error
13 Illegal file name (bad DCB)
14 GAT read error
15 GAT write error
16 HIT read error
17 HIT write error
18 File not in directory
19 File access denied
1A Directory space full
1B Disk space full
1C EOF encountered
iD NRF out of file range
1E Full directery
1F Program not found
20 Illegal drive number
21 No device space available
22 Load file format error
23 Memory fault
24 Attempt to load to ROM
25 Illegal access attempted
26 File has not been opened
27-3E Not defined
3F Unknown error code

40

APPENDIX B

TASMON COMMAND SUMMARY

This notation is used in the command summary:

HH
88

EE
TT
n
h

m om0 O O = W >

moa @

~

= 4 digit hex value
= 4 digit hex starting point
= 4 digit hex ending point
= 4 digit hex transfer point
= Single digit from 1 to 9
= 2 diglit hex value
SS ASCII dump of memory starting at SS.
n HH Set breakpoint n at HH.
{ENTER> Display the breakpoints.
n Clear breakpoint n.
<ENTER> Clear all breakpoints.
SS Disassemble memory starting at S8S.
{ENTER> Exit TASMON and return to DOS or BASIC
88 h h h h Find search key h h h h starting at SS.
HH Start execution at HH.
{ENTER> Start execution at user's PC.
SS Dump memory in hex starting at SS.
Single step - CALLs stepped through.
(I or !) Toggle RESTARTS between stepped through and
execute in full.
S8 Set user's screen buffer at SS and clear
the screen buffer.
{ENTER> Display the user's screen for as long as the
ENTER key 1is held down.
Y Turn the KEEP SCREEN command on.
N Turn the KEEP SCREEN command off.
T <offset?> Load in a SYSTEM tape with optional offset.

41

L D <offset>
"file"

M H SS

M A SS

N n h

N1

N <ENTER>

O T SS EE TT
file

¢ D SS EE TT
file

P SS EE

R rp HH
S H1 HZ2 +
S H1 H2 -

T I

VvV D
file

WT SS EE TT
file

LLoad in CMD disk file named "file" with an
optional offset.

Modify memory in hex mode starting at 38S.
Modify memory in ASCII mode starting at SS.

Set number of executions for breakpoint n
to h.

Iinitialize all execution numbers to 01.

Reset all execution numbers to their default
values.

Output disassembled listing starting at S8,

ending at EE with a transfer address of TT
to tape with the file name 'file".

Qutput disassembled listing starting at SS,
ending at EE with a transfer address of TT
to disk with the file name "file".

Disassemble to the printer starting at S8
and ending at EE.

Replace register pair "rp" with HH.
Add H2 to HL.
Subtract H2 from Hl.

Trace through a program with CALLs stepped
through.

Trace through a program with CALLs executed
in full.

Go to user routine. Does nothing unless a
routine is patched in.

View a SYSTEM tape. Returns starting,
ending and transfer addresses without
loading into memory.

View the disk file titled "file". Returns

starting, ending and transfer addresses
without loading into memory.

Write a SYSTEM tape starting at SS, ending
at EE with a transfer address of TT and file
name of "file".

42

WD SS EETT
file

X 8S EE TT

Y 8S EE TT

Z 8SS EE h
RT ARROW

LFT ARROW

*

DN ARROW

CLEAR KEY

BREAK KEY

Write a CMD disk file starting at 58, ending
at EE with a transfer address of TT and file
name of "file'.

Relocate memory from S8S to EE and place it
in memory starting at TT.

Block move from SS to EE and place in memory
starting at TT.

Set memory from 88 to EE equal to h.

Skip current instruction in user's PC and
point to next instruction.

Back up user's PC to the previous
instruction.

Dump screen contents to the printer.

1) 8ingle step - CALLs executed in full

2) Display next line of a memory dump

3) Point to next byte when modifying memory
Clear the screen and display the registers.

Return to command mode.

43

APPENDIX C - MODEL | VERSION

This appendix will give an example of patching in a USER command

(the "UI" command). This routine will allow HARD COPY TRACING and
DISPLAY THE LAST SEVEN EXECUTED INSTRUCTIONS.

HARD COPY TRACING 1is the same as normal tracing except the
current PC address and Z-80) mnemonic are sent to the printer. If

the printer is not on when "HARD COPY TRACE" is selected, nothing
is printed and execution continues as if the TRACE command had
been selected.

DISPLAY THE 1,AST SFVEN EXECUTED INSTRUCTIONS while tracing will
display the user's PC and Z~80 mnemonic on TASMON's display
lines.

This patched routine assumes that TASMON version 2.12 is being

used. Also, TASMON should be located in memory starting at
6000H. The following bytes are entered:

M H 7F7C 00

and enter the following bytes from there:

7F7C: 00 00 CD 5C 69 CD E3 60 FE 44 28 OB FE 48 28 3F FE 55
7F8E: CA EE 60 18 FF CD 5C 69 32 21 80 C3 30 68 AF 32 21 80O
7FAO0: 32 20 80 C3 34 60 3A 21 80 R7 28 1A CD OF 69 2A 3C 7A
7FB2: CD 68 71 3FE 20 CD 5C 69 21 28 3C 06 11 7E 23 CD BA 79
7FC4: 10 F9 3A DB 7A C9 CD 5C 69 32 20 80 C3 30 68 3A 20 RO
7FD6: B7 CA FA 60 3A ER 37 FE 40 D2 FA 60 2A 3C 7A 7C CD 06
7FER: 80 7D CDh 06 80 3F 20 CD EB 79 CDh FA 60 068 14 21 28 3C
7FFA: 7E CD F8 79 23 10 F9 3E OD C3 E8 79 F5 CB 3F CB 3F CR
800C: 3F CB 3F CD 15 80 F1 E6 OF C6 30 FE 3A 38 02 C6 07 C3
801E: E8 79 00 00

MODIFY MEMORY in hex as follows:

M H 60DE EE 7E
60DF " 60 7F
60E0 Cc3 {BREAK>

M H 6729 FA D3
672A" 7 60 7F

672B C3 <{BREAK>
M H 6855 : 3A CD

6856 DB A6
6857 7A TF

44

NOTE: DO NOT hit the BREAK key to exit from this last memory
modification until the correct values are in place. Failure to
«do this will prohably cause a reset!

M H 60F8 4 34 9C
BOF9 " 80 7F

60FA : 3A <BREAK>

To write the patched version of TASMON out under the file name
"UPTASMON/CMD'", enter the following command:

¥ D 6000 8021 6000

UPTASMON/CMD <ENTER>

A patched tape version can be written by substituting a "T" for
the "D" in the WRITE command shown above.

To execute the "HARD COPY TRACE" command, press the "U" key
followed by the "H" key for HARD COPY TRACE. Next, enter the
CALL stepping mode. This is an "I" for CALLs stepped through or
a DOWN ARROW for CALLs executed in full.

TASMON will step through memory as it would with the TRACE
command except the following type output is sent to the printer:

8000 LD A, (37EB)

All TRACE command keys function with the "HARD COPY TRACE" patch.

The DISPLAY LAST SEVEN EXECUTED INSTRUCTIONS patch is executed by
pressing the "U" key and the "D" key for DISPLAY LAST SEVEN

EXECUTED INSTRUCTIONS. Next, enter the CALL stepping mode. This
is an "I" for CALLs stepped through or a DOWN ARROW for CALLs
executed in full.

After each instruction is executed, its address and Z-80 mnemonic
are displayed on TASMON's command lines. Up to eight previously
executed instructions will be displayed.

All TRACE command keys function with the "DISPLAY LAST SEVEN
EXECUTED INSTRUCTIONS" routine.

1f even more user routines are to be added, the address at
TF8F~-7F90 can he modified to the starting address of the new

routine. To execute this routine press the "U" key to jump to
this user patch and another "U" to jump to the new routine.

45

APPENDIX C - MODEL HI VERSION

This appendix is simply a Model TII version of the above appendix

C for the Model I, The instructions for using this patch are not
given here - refer to those given ahove.

To start inputting the patch the following bytes are entered:
M H 7FE8 00

and enter the following bytes from there:

7FFE8: 00 00 CD 5B 69 CD E1 60 FE 44 28 OB FE 48 28 3F
7FF8: FE 55 CA EC 60 18 EE CD 5B 69 32 85 80 C3 2D 68
8008: AF 32 84 80 32 85 80 C3 33 60 3A 85 80 B7 28 1A
8018: CD OE 69 2A 98 7A CD 6B 71 3E 20 CD 5B 69 21 28
8028: 3C 06 11 7E 23 CD 1C 7A 10 F9 3A 37 7B C9 CD 5B
8038: 69 32 84 80 C3 2D 68 3A 84 80 B7 CA F8 60 24 98
8048: 7A 7C CD 6A 80 7D CD 6A 80 3E 20 CD 45 7A CD FR
8058: 60 06 14 21 28 3C 7E CD 45 7A 23 10 F9 3E OD C3
8068: 45 7A F5 CB 3F CB 3F CB 3F CB 3F CD 79 80 F1 E8
8078: OF C6 30 FF 3A 38 02 C6 07 C3 45 7A 00 00

MODIFY MEMORY in hex as follows:

M H 60DC FC EA
60DD ' 60 7F

60DE €3 <BRFAK>

M H 6726 F8 3F

6727 ' 60 80
6728 €3 <BREAK>

M H 6852 : 3A CD

685377 37 12

6854 7B §§

NOTE: DO NOT hit the BREAK key to exit from this last memory
modification until the correct values are in place. Failure to
do this will probably cause a reset!

M H 60F6 3 33 08

60F7 ' 60 80
60F8 : 3A <BREAK>

To write the patched version of TASMON out under the file name
"UPTASMON/CMD", enter the following command:

W D 6000 8085 6000
UPTASMON /CMD <{ENTER>

If more user routines are to be added, the address at 7FFR-T7FFC
may be modified to the starting address of the new routine.

46

APPENDIX D

PATCH FOR RADIO SHACK SERIES | EDITOR/ASSEMBLER

Radio Shack recently started shipping a new version of their

editor/assembler. This version 1is titled Series I. The tape
version of this assembler uses the same tape format as their past
assembler did. However, the disk version uses a different format

for writing source files to disk. This change requires a patch
in, TASMON to allow the Output disassembly function to work
properly.

For Model I users, change 723C to 18 and 723D to 19.

For Model III users, change 7242 to 18 and 7243 to 19.

This should take care of any problems using the Series I package.

47

APPENDIX E

TECHNICAL INFORMATION

This appendix will give some useful patches and memory locations
in TASMON.

A problem exists when disassembling to tape with a non- expansion
interface Model 1 computer. TASMON uses the value at 4049H for
the top of memory. This is the correct value for an expansion
interface equipped machine but not a 16K LEVEL II machine. The
patch required for the 16K machine is as follows:

Starting address = T218H
Change: 49 40 to
Bl 40

The following assembly language listing is for a patch to allow
ASCII characters to be displayed while disassembling to the
screen or printer. The 1listing is shown for the Model I with
appropriate changes for the Model III. Note that it is assembled
below 6000H. The reason for this is that i{f it were placed at
the end TASMON, this patch would conflict with the Appendix C
patch. This routine c¢an be put anyplace 1n memory by changing
the ORG statement as needed.

00100 ORG 5FDOH ; 3FDOR for MODFL IIXIX
00110 NOP

00120 NOP

00130 ASCDIS PUSH HL

00140 PUSH BC

00150 WR10 CALL SHEX1

00160 INC HL

00170 DJNZ WR10

00180 POP BC

00190 POP HL

00200 CALL SPCDh1

00210 WR20 LD A, (HL)

00220 Ccp 20H

00230 JR C,WR40

00240 CP 80H

00250 JR NC,WR40

00260 CALL BRYTOUT

00270 WR30 INC HL

00280 DJNZ WR20

00290 JP 6B1AH ;6B1DH for Model III
00300 WR40 CALL SpCn1

00310 JR WR30

00320 SHEX1 EQU 7066H ; 70690 for Model III
00330 SPCDt | EQU 71B7H ;71BAH for Model III
00340 BYTOUT EQU 7006H ; 7009H for Model III
00350 ;

00360 ;

48

00370 ORG 6B14H ;6B17H for Model III
00380 JP ASCDIS
00390 END

There are two important notes which should have been made more
clear in the manual.

The first one deals with disassembled output to disk/tape.
TASMON does not leave very much free memory for a symbol table
when it is located at high memory. If the memory being
disassembled requires more than 50 bytes for its symbol table (25
symbols) and TASMON is at high memory, then the symbol table will
start building down on top of TASMON! Care should be taken to
avold this problem.

The other note regards the memory dumps, 1n particular the
disassembled dump. When the disassembled dump 1s activated,
pressing the "-" key will cause the dump to go back 15
instructions. As far as we know, TASMON 1is the only monitor
avalilable with this feature.

The following is a list of various patch points. The function of
each is also defined.

Disabling labels when disassembling: MODEL I - set memory
address T72C8H to a C9H. To reenabhle, set 72C6H to an

AFH. For the MODEL III, use memory address 72C7H.

Let the ASCII dump display graphics characters: MOD I -~ set
memory address 68B06H to the hex value of the highest
displayed byte. For example, setting this value to COH
will allow graphics characters to be displayed. The
value is originally set to BOH. For the MOD III use a
memory address of 6803H.

Change the label character used when disassembling to disk/tape
to something other than a "2Z". TASMON writes out
labels as a "Z" followed Dby the hex address of the
instruction. This character can make it difficult when
trying to find labels since the "Z'" character is used
in such instructions as "JR Z,$5" and "RET Z". A "Q"
could be a better cholice. For the MOND I, change the
byte at address 73BOH to something other than a "Z".
The address for the MOD III is 73Bl1H.

The list of routine here may be useful for users who wish to
access routines already present in TASMON when writing USER
routines. The addresses are shown in the format "MOD I/MOD III"
where the first number is the MODEL I address and the second is
the MODEL IIJ address. It is assumed that these addresses will
he CALLed unless otherwise noted (i.e. 1f the address given was
6038, do a "CALIL 6038" to execute it).

49

60FF /60EC

69AB/69AA
6AA9/6AAC

633F /633D
6543/6541

60E3 /60E1

7168/716B

7A26/7A82

7070/7073

62EF /62ED

78E8 /7933

79BA/TALC

79E8 /TA45

Jump back to TASMON and reset TASMON's stack. This
routine 1is wuseful for returning to TASMON from USER

routines. TASMON will scroll its display and ask for
another command.

Clear the video display.

Disassemble instructions starting at the one pointed

to by the HL register pair. The BC register pair
holds the number of instructions to disassemble and
the A register holds the display flag. A=1 means

display the dump, A=0 means do not display the
disassembly.

Display the current user registers.

Input a four digit hex value into the HL register pair
and echo inputted text to the screen.

Get a keyboard character. If the "*" key is hit, do a

screen dump. 1If the BREAK key is pressed, jump back
to TASMON. The character depressed is returned in
the A register.

Display the contents of the HL register pair in hex on
the screen.

Start of user's register save area. The registers are
stored in memory in the same order that they are
displayed from TASMON,

Display the A register on the video display in hex.

TASMON's reentry point from a breakpoint. A
breakpoint is a CALL instruction. Calling this
address will cause the current 2-80 registers to be

saved as the user's registers. The PC register will
be POPed off the stack.

TASMON's keyboard driver. 1If you wish to install your
own keyboard driver, put a "JP" to your driver at

this address.

TASMON's video driver. If patching 1in your own
routine, do not assume that the registers are saved
before entering your routine.

TASMON's printer driver. 1If patching 1in your own

routine, do not assume that the registers are saved
before entering your routine.

50

TASMON

With TASMON, memory may be examined/modified
and machine language programs executed. Machine language
programs may be run in real time, single step, or slow motion.
Your Z-80 registers may be examined/modified. They are
continuously displayed in the upper right part of the screen.
Three different memory dumps can be displayed on the left
side of the screen, while executing any TASMON command
on the right side of the screen. Memory can be disassembled
and routed to disk or tape as an Editor/Assembler source file
with labels generated for pertinent addresses. SYSTEM tapes
and machine language disk files can be read in and written out.

The following is just a partial list of TASM.N
capabilities:

® Load a System Tape \
® Load a /CMD Dmk,l?

® Replace Registers
® Modify Memory
® Hex Memory Dump

@ ASCH Memory Dump

® Disassembled Dump

@ Disassemble to Printer

® Dump Screen to Printer

® Sum Hex Values

@® Subtract Hex Values

® Find 1-4 Consecutive Bytes
® Skip Forward One Instruction
@® Back Up One Instruction
® Clear Screen

® Relocate System Programs

TASMON is fully relocatable, file orien
excellently implemented. The users manual is comp
sample sessions and a command reference card.
recommended. Model I1II version is available.

® Write a /CMD Drs_
® Disassemble to Dis
® Disassemble to T:
® ROM or RAM Brea
® Set Breakpoints
@ Display Breakpoint
® Clear Breakpoints
® Single Step with C
@ Single Step throu
® Trace at Eight Sp
® GO Execute Prog

	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0000.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0001.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0002.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0003.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0004.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0005.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0006.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0007.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0008.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0009.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0010.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0011.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0012.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0013.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0014.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0015.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0016.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0017.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0018.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0019.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0020.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0021.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0022.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0023.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0024.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0025.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0026.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0027.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0028.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0029.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0030.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0031.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0032.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0033.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0034.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0035.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0036.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0037.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0038.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0039.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0040.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0041.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0042.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0043.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0044.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0045.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0046.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0047.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0048.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0049.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0050.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0051.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0052.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0053.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0054.tif
	TASMON with Appendix A-E (Multipage TIFF)_irfanview_extract_0055.tif

