

SCDRCE RE FR

BASIC

COMPILER

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

PRE FACE

SYSTEM SOFTWARE is one of the leading international suppliers of software for
the Sorcerer Computer. SYSTEM SOFTWARE has successfully researched,
developed and marketed more than 20 top quality software products for Sorcerer
computers to more than 30 countries. Besides its direct mailing list of over
2000 clients, System Software distributes software through software houses and
dealers throughout the world.

The BASIC COMPILER is the latest quality product from System Software. It is
the result of over 3500 man hours of research, development and testing by a
team of highly skilled programmers and language designers.

The design objectives of the BASIC COMPILER were to produce a fast, compact
and user friendly system to meet a wide range of user requirements. These
objectives have been met and the BASIC COMPILER system, while maintaining
compatability with the Sorcerer ROM PAC system, includes a number of additional
powerful features. These features include integer variables, integer and byte
arrays, graphics commands, cassette string input/output, cursor control, a special
keyboard input command, extra string handling facilities and more.

The compiler can be used for home and family use, for business applications and
scientific research. Often a compiled program will eliminate the need to write
routines in Assembly Language because of the speed advantage.

This BASIC Compiler is probably the largest, the most complex and worthwhile
project ever undertaken and written exclusively for the Sorcerer Computer.

SYSTEM SOFTWARE is committed to continuing research and development of new
and better software products for Sorcerer users. Developments in micro-computer
software, and users' needs are continually monitored to ensure that high
performance products are produced to meet the users' needs.

BASIC COMPILER Ver 1.2 	Copyright Cc) November 1982 System Software

WARRANTY & BACKUP

SYSTEM SOFTWARE has made every effort to ensure that the BASIC COMPILER
operates as specified. However, no claims or warranties are made with respect to
the BASIC COMPILER or any associated materials. In particular, no claims are
made as to the fitness of the BASIC COMPILER for any particular purpose.

From time to time upgrades, having extra commands and facilities will become
available. These improvements will be available to original purchasers of the
BASIC COMPILER at a reduced price.

If you find what you consider a problem with either the compiler or
documentation, please inform SYSTEM SOFTWARE. If a bug is detected, please
mention the version number, any modification you may have had done to your
computer or ROM PAC, the amount of RAM you are using and a listing of the
problem with an explanation of the symptoms.

COPYRIGHT

The BASIC Compiler and documentation is copyright SYSTEM SOFTWARE, G.
Brown and J.M Hall. All rights are reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior
written permission of:

SYSTEM SOFTWARE, I Kent St, BICTON 6157 Australia.

BASIC COMPILER Ver 1.2 	Copyright Cc) November 1982 System Software

CONTENTS

1. INTRODUCTION TO THE BASIC COMPILER
1.1 LOADING THE COMPILER FROM CASSETTE

2. BASIC LANGUAGE
2.1 PROGRAM STRUCTURE

2.1.1 Statement Order
2.2 LANGUAGE ELEMENTS

2.2.1 Notation
2.2.2 Character Set
2.2.3 Line Format
2.2.4 Constants
2.2.5 Variable Names
2.2.6 Scalar Variables
2.2.7 Array Variables
2.2.8 Function Values
2.2.9 Operators
2.2.10 Space Requirements for Variables and Constants

2.3 EXPRESSIONS
2.3.1 Arithmetic Operators
2.3.2 Numeric Overflow
2.3.3 String Concatenation
2.3.4 Relational Operators
2.3.5 Logical Operators
2.3.6 Order of Expression Evaluation
2.3.7 Type Conversion

2.4 SPECIFICATION STATEMENTS
2.4.1 REM\OPTION
2.4.2 DIM
2.4.3 REM\BYTE
2.4.4 REM\INTEGER
2.4.5 CLEAR
2.4.6 REM

2.5 ASSIGNMENT STATEMENTS
2.5.1 LET
2.5.2 MID$

2.6 FLOW CONTROL STATEMENTS
2.6.1 GOTO
2.6.2 GOSUB
2.6.3 RETURN
2.6.4 IF - THEN - ELSE
2.6.5 FOR - NEXT
2.6.6 ON
2.6.7 STOP
2.6.8 END

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

2.7 INPUT/OUTPUT STATEMENTS
2.7.1 INPUT
2.7.2 READ
2.7.3 DATA
2.7.4 RESTORE
2.7.5 PRINT and PRINT&
2.7.6 SET
2.7.7 RESET
2.7.8 CLOAD*
2.7.9 CSAVE*
2.7.18 POKE
2.7.11 OUT
2.7.12 WAIT

2.8 USER DEFINED FUNCTIONS
2.8.1 DEF FN

2.9 USER ASSEMBLY ROUTINES
2.9.1 USR

2.10 BASIC FUNCTIONS
2.10.1 Numeric - ABSIEXP,INT,LOG,SON,SOR,RND
2.10.2 Trigonometric - ATN,COS,SIN,TAN
2.10.3 String - ASC,CHRS,CVI,CVS,INSTR,LEFTSILEN

MIDS,MKIS,MKS$,RIGHTS,SPC,STR$,VAL
2.18.4 Input/Output - UNKEY,INP,PEEK,POS,SPC,TAB
2.18.5 General - FRE

3. PROGRAM DEVELOPMENT
3.1 DIFFERENCES BETWEEN ROM PAC BASIC AND BASIC COMPILER
3.2 OPTIMIZING PROGRAM PERFORMANCE
3.3 APPLICATION EXAMPLES

3.3.1 Printer Interface
3.3.2 Using the Compiler with Disks
3.3.3 Full Example in Using the Compiler

4. COMPILER OPERATING INSTRUCTIONS

APPENDICES
Appendix A - Error Messages
Appendix B - Reserved Words
Appendix C - Memory Maps

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

INTRODUCTION TO THE BASIC COMPILER 	 1.8

CHAPTER 1 	INTRODUCTION TO THE BASIC COMPILER

The compiler is designed to run in a 32K or 48K Exidy Sorcerer computer system
with one or more cassette drives. It is simple to operate, allowing the user to
develop or edit his BASIC program with the standard BASIC ROM PAC editor and
then compile the resulting program directly from the source program in memory.

The BASIC compiler is a program which converts a source program written in
BASIC into object code, which may then be run at a speed comparable to machine
code. The code produced is the machine code for a hypothetical stack orientated
computer which is emulated in the Sorcerer by a machine code Runtime Support
System. In general, the code produced by the compiler is more compact than the
original tokenised code. At the time of compilation, the compiler checks the
syntax of the source program, resolves all line numbers referenced, translates
numeric constants to binary and fixes the locations of all variables used in the
original BASIC program. An interpreter, on the other hand, is at a speed
disadvantage because it must carry out the same functions every time it executes
each statement. Compilation is carried out only once, and the resulting object
code may then be stored on cassette or disk for subsequent use, or immediately
executed.

1.1 LOADING THE COMPILER FROM CASSETTE

The supplied cassette tape contains a 32K version of the compiler on the front
side and a 48K version on the reverse side. Both recordings are at 300 baud. It
is suggested that the user makes a copy of the compiler on his own cassette at
1200 baud and keep the supplied cassette as a backup copy.

To copy the 32K version: 	 To copy the 48K version:

SE T=1 	 SE T=1

LO 	 LO

SE T=0 	 SE T=8

SE X=4C6E 	 SE X=8B6E

SA C0M32 2800 7EFF 	 SA COM48 6780 BDFF

To load and execute the compiler, turn on the Sorcerer with the BASIC ROM PAC
inserted, (you may then optionally write or load a BASIC program) and type:
BYE followed by LOG. Load the appropriate version of the compiler. Upon
loading, the compiler will try to compile the program in memory. If none is
found, a al ERROR will be printed and control will be returned to BASIC. If
a Basic Source program is present, it will be compiled. To execute the compiler
at any time from BASIC, type: BYE followed by GO 108

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

. BAS I C LANGUAGE 	 2 . 0

CHAPTER 2. BtSI C LANGUAGE

This chapter describes the syntax and purpose of each BASIC statement processed
by the BASIC COMPILER. The BASIC COMPILER includes all the BASIC program
statements in the ROM PAC BASIC and in addition supports extra statements and
functions which can be used to increase speed and reduce space requirements.

In general, any program which runs with ROM PAC BASIC will also run with the
BASIC COMPILER. Refer to chapter 3, 'Program Development' for the differences
between ROM PAC BASIC and the BASIC COMPILER, and for useful hints on
optimizing program performance.

2.1 PROGRAM STRUCTURE

A BASIC program consists of one or more lines of text. Each line begins with a
line number which is followed by one or more BASIC statements separated by
colons. (:) A BASIC statement consists of a keyword, (or an implied LET),
followed by various language elements such as constants, variables, operators and
functions.

There are five main types of BASIC statements:

1) REM statements - to make the program more readable.
2) Specification statements - to specify what types the variables are.
3) Assignment statements - to evaluate expressions and store the result.
4) Flow Control statements - to change the order of program execution.
5) Input/Output statements - to transfer data.

2.1 .1 STATEMENT ORDER

The BASIC COMPILER requires that certain statements (if present) must appear
at the beginning of a BASIC program, in the following order:

1) OPTION or REM\OPTION
2) DIM
3) REM\BYTE
4) REM\INTEGER
5) Other statements

These statements are described in section 2.4 'Specification Statements'. REM
statements (other than the above REM\ statements) may appear anywhere in a
program, including before and interleaved with the above statements.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

SIC LANGUAGE
	

LanQuaQe Elements 	 2.2

2.2 LANGUAGE ELEMENTS

This section describes the language elements which are used in BASIC statements.
The rules for combining language elements in expressions are presented in section
2.3 and the various BASIC statements themselves are described in section 2.4 to
2.7

2.2.1 NOTATION

The following terminology is used to describe the syntax of BASIC statements
and BASIC functions.

E 3
UPPER CASE
lower case

The contents are optional
BASIC reserved words
Words or symbols supplied by the user
Indicates that the portion of the statement
immediately preceding the dots may be repeated
represent integer expressions
represent real expressions
represent string expressions

2.2.2 CHARACTER SET

The set of characters recognised by the BASIC Compiler consist of:

I) Digits 8-9
2) Upper case and lower case letters of the alphabet.(A-Z s a-z)
3) The following operators and delimiters: + 	* 	/ =

< 	. $; 	
A

,SPACE
4) The carriage return <CR> terminates each input line

In addition, CTRL C and RUNSTOP are used by the Run Time Support System
to abort and interrupt execution respectively.

	

BASIC COMPILER Ver 1.2 	Copyright Cc) November 1982 System Software

SI C LANGUAGE 	 LanQu acke El erne n t s

2.2.3 LINE FORMAT

Each line of source code takes the form:

line number BASIC statement :BASIC statement)... <CR)

The line number is a whole number between 0 and 65535 inclusive and a line may
have up to 64 characters including the line number.

. . 4 CONSTANTS

Constants are language elements which have a fixed value in a program. They
may be logical, byte, integer, real or string.

LOGI CAL CONSTANTS

Only two values are recognised. False is represented by the value zero,
while true is any nonzero numeric value. When a logical expression is
evaluated, the result will be set to 0 or -1

BYTE CONSTANTS

Whole numbers between 0 and 255 inclusive that are not followed by a
decimal point. eg. 8, 47, 255

INTEGER CONSTANTS

Whole numbers between -32768 and 32767 inclusive and must be written
without a decimal point. eg. 8, 47 , 255, 288, 32767, -58,

REAL CONSTANTS

Positive and negative numbers containing a decimal point or number
expressed in exponential form. In this latter form, a number (the
mantissa) is followed by the letter E and a signed or unsigned integer
(the exponent). The exponent represents the power of 10 by which the
mantissa is multiplied. In memory, a real number is contained in 4 bytes.
The range of the absolute value of a real constant is between about
1.4E-38 and 1.4e+38 with 6 significant digits.
eg. 8., -32., 5.887, 1.3E-32

. 2 . 3

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC LANGUAGE
	

Lanauacke Elements 	 2.2.4

STRING CONSTANTS

Consist of zero to 255 alphanumeric characters delimited by double
quotation marks. Any character what-so-ever may be included in a string
except a double quote. eg. HABC123n n He I 1 o'

The closing quote is optional if the string is the last entry on a line. A
null string is expressed as two adjacent quote marks. I e " "

2.2.5 VARIABLE NAMES

A variable is a language element whose value can be changed during program
execution. The two main types of variables are scalar variables (which store a
single value) and array variables. (specified with a DIM statement and can
store more than one value).

A variable name begins with a letter followed by any number of letters or digits
followed by an optional 'V. Only the first 2 characters (excluding the '$') are
significant. The names used must not be BASIC Compiler reserved words.
eg. AB, AEI., Al 2 are legal variable names.

Variables are assumed to be numeric, unless the name is followed by $, in
which case it is assumed to be a string variable. The name before the dollar sign
may be the same as the name of a numeric variable. ie. AB$ and AS are
separate variables and may appear in the same program

If the first 2 characters of a name are EN, the name is that of a user defined
function. (see section 2.8)

2.2.6 SCALAR VARIABLES

A scalar variable stores a single value. There are 3 types of scalar variables:

INTEGER SCALAR VARIABLES

An integer scalar variable is specified in a REM\ INTEGER statement
and its name cannot end in a 'Si. An integer scalar variable occupies
two bytes of memory and can store a value in the range -32768 to
32767.
eg. REI'1\INTEGER A,I,J

A=32:1=-4678:I=A+J

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BAS I C LANGUAGE Lanclumae Elements 	 2.2.6

REAL SCALAR VARIABLES

A real scalar is any scalar variable which neither ends with a 'V nor
is specified in a REM\INTEGER statement. A real variable occupies
four (4) bytes of memory and can store a value about in the range 1.4E-
38 to 1.4E+38. eg. A=52.76 	85=-1.3066E+23 	X=Y+15.2

STRING SCALAR VARIABLES

The name of a string scalar variable ends in a V. A string scalar
occupies 4 bytes in memory in addition to the 0 to 255 bytes
(characters) stored in the variable itself.
eg. AWD:ABCWHELLW:X$=YWABC"

Note: Integer scalar variables should be used wherever possible (in preference to
real or string scalar variables) in order to reduce program space and
increase execution speed. (See section 3.2)

. . 7 ARRAY VARIABLES

An array variable stores one or more values. All array variables must be
dimensioned in a DIM statement (See section 2.4.2). An array variable cannot
have the same name as a scalar variable. The base address of array subscripts is
O.

DIM A(5)„8(6) 05(2,7)
DIM AJC2,4 1 3)
Thus array A has 6 elements: A(0) ,A(1) 	.A(5)

There are four types of array variables:

BYTE ARRAY VARIABLES

A byte array variable is specified in a DIM statement and in a
REM\BYTE (see section 2.4.3). A byte array name cannot end in a
'$1. Each element of a byte array occupies one byte of memory and can
store a value in the range 0 to 255.
eg. DIM A(5),12(7,2 1 19),C(15),J(191 2,4)

REM\BYTE I2,J
(Array 12 and J are byte array variables)

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC LANGUAGE Lanquage Elements 	 2.2.7

INTEGER ARRAY VARIABLES

An integer array variable is specified in a DIM statement and in a
REM\ INTEGER statement in a similar way to the specification of
Byte Array Variables above. Each element in an integer array occupies 2
bytes of memory and can store a value in the range -32768 to 32767.

REAL ARRAY VARIABLES

A real array variable is specified in a DIM statement. The name
cannot end in 'V and it must not be specified in a REM\ statement.
Each element occupies 4 bytes of memory and can store a value in the
range of about 1.4E-38 to 1.4E+38.

STRING ARRAY VARIABLES

A string array variable is specified in a DIM statement and its name
ends in a W. Each element of a string array occupies 4 bytes of
memory in addition to the 0 to 255 bytes (characters) stored in the
element itself.

Byte or integer arrays should be used wherever possible (in preference to real or
string arrays) in order to reduce program space and increase execution speed (see
section 3.2).

2.2.8 FUNCTION VALUES

Functions are used in expressions to provide a single value. A function value
consists of a function name followed by i(s, one or more expressions separated by
it i t and ending with a 1)1. The values of the above expressions are used to
calculate the value of the function.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC LANGUAGE 	 Language Elements

There are two kinds of functions:

USER DEFINED FUNCTIONS

-4 .1 8

These functions are defined by the user in his program (see section 2.8),
and can only return a real value.

eg. DEF FNAB(X)=1+2*X
Y=2+ FNAB(3)

The value of FNAB(3) is 7.

BASIC FUNCTIONS

The BASIC COMPILER includes a number of pre-defined functions (see
section 2.10). BASIC functions return integer, real and string values.
eg. Y=SIN(3)+ASC("A")+VAL(LEFT$(STR$(B)))

2.2.9 OPERATORS

Operators are used to combine constants, variables and function values into
expressions. The operators available are:

Arithmetic: A , 	*, \, /, .1-
String Concatenation: .4-
Relational: 	=, <>, <, >, <=, >=
Logical 	NOT, AND, OR, XOR

2.2.10 SPACE REQUIREMENTS FOR VARIABLES AND CONSTANTS

The memory requirements for constants and variables are set out as follows:

Constants 	Bytes of memory used
Byte 	 1
Inteqer 	 2
Real 	 4
String 	 4 + length of the string

Sc al ar Variables
Integer
	

":1

Real
	

4
Stri ng
	

4 + length of str ng

Array Variables 	10 	bytes for each array element as
set out for scalar variables above.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC LANGUAGE Expressions 	 2 . 3

2 . 3 EXPRESSIONS

An expression consists of one or more operands (constants, variables or function
references), which are combined with operators to calculate a single value. The
rules for forming and evaluating expressions using the different kinds of operators
are described in the following sub-sections.

2.3.1 ARITHMETIC OPERATORS

A 	 Exponentiation 	 AAB
Negation 	 -A
Multiplication 	 A*B
Real division (with result rounded) A/B
Integer division (with fractional
part truncated) 	 A\ B
Addition 	 A+B
Subtraction 	 A-B

These operators are described in more detail below.

A EXPONENTIATION

The value of the expressions AAB is A multiplied by itself B times. A and B
may be integer or real values. If either is an integer value, it is firstly
converted to a real before exponentiation is carried out.

+ UNARY PLUS AND MINUS OPERATORS

The unary plus and minus operators (together with the logical NOT operator)
are the only operators which operate on a single operand. They can appear at the
beginning of expressions or immediately after a "(" or at the beginning of a
subscript expression. eg. -5.2, A(-3+ I) , +X

* MULTIPLICATION OPERATOR

The value of A*B is A multiplied by B. A and B can be integer or real
values. If A and B are not the same type, the integer value is converted to a
real before the multiplication is done.

BASIC COMPILER Ver 1., 	Copyright (c) November 1982 System Software

BASIC LANGUAGE
	

Expressions 	 2.3.1

/ REAL DIVISION OPERATOR

The value of A/B is A divided by B. A and B can be integer or real values. If
either A or B is an integer value then it is converted to a real before the two
values are divided.

\ INTEGER DIVISION OPERATOR

The value of MB is A divided by B with the result truncated to an integer. A
and B can be integer or real values. If either A or B is a real, the value is
firstly converted to an integer before the division is carried out.

EXPRESSIONS 	PRELIMINARY VALUE 	FINAL VALUE
4\2 	 2 	 2
4\3 	 1.3 	 1
4\5 	 8.8 	 0

-4\3 	 -1.33 	 -1
5.3\1.6 	3.3125 	 3

+ - ADDITION AND SUBTRACTION OPERATORS

The value of A+B is the sum of A and B. The value of A-B is the difference
between A and B. A and B may be integer or real. If either A or B is real, both
values are converted to real before the operation is carried out.

2.3.2 NUMERIC OVERFLOW

Numeric overflow occurs during the evaluation of an expression if the current
value of the expression is too large to be stored for the type of expression
value. An error message is generated and execution stops.

Overflow occurs in integer expressions if the current value of the expression is
outside the range -32768 to +32767. Overflow occurs in real expressions if the
current value of the expression is greater than about 1.4E+38.

The order in which an expression is evaluated can determine if overflow will
occur as shown in the following examples of integer arithmetic.

EXPRESSION 	INTERMEDIATE VALUES

-32767-4+5 	-32771 	 Overflow occurs
-32767+5-4 	-32762, -32766 	 No overflow

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC LANGUAGE
	

Expressions 	 2.3.3

2.3.3 STRING CONCATENATION OPERATOR

The string concatenation operator (1 4. 1) is used to concatenate (join) two string
values. For example if AS=uABCa and 8$="XYZ " then A$+8$ has the value

ABCXYZ n

If two null strings are concatenated the result is a null string. If the combined
lengths of the two strings exceeds 255 characters an error message will be
printed and execution stopped.

2.3.4 RELATIONAL OPERATORS

Relational operators are used to compare two values. The result of the
comparison is an integer value which is either true (-1) or false (0). Relational
operators have a lower precedence than arithmetic (or string concatenation)
operators.

Real and integer values can be compared with each other. If one of the values is
real then the other value is converted to a real before the comparison is made.
A string value can be compared with another string value but not with a numeric
value.

= 	 equal i ty 	 A=B or A$=8$
0 or .2>< 	inequali ty 	 /408 or A08

less than 	 A<8 or A$<B$
> 	 greater than 	 A>B or A$>B$
<= or =e, 	less than or equal 	A<=13 or A$<=8$
:>= or => 	greater than or equal A>=8 or A$>=B$

Strings are compared by comparing the ASCII codes of the characters from left
to right until the codes differ or one or both strings are exhausted. The string
with the lower code precedes the string with the higher codes. If one string is
exhausted before a difference is detected, that string precedes the longer string.

ie.

A$=8$ if A$= "ABC" and BWABC"
A<8 if A$="ABC" and 8$="ABCD"
A$<B$ if A$=1' 	and 8$="ABC"

BASIC COMPILER Ver 1.2 	Copyright Cc) November 1982 System Software

BASIC LANGUAGE
	

Expressions 	 2.3.5

2.3.5 LOGICAL OPERATORS

Logical operators operate on two logical values to produce another logical value.
A logical value is an integer which has a value of 0 (false) or non zero (true).
If either or both of the values operated on are real then they are rounded up to
integers before performing the operation. If either of the values is a string value
an error message will be printed and execution stopped. Logical operators have a
lower precedence than relational and arithmetic and string concatination.

The logical operators (in order of precedence) and truth table examples are
shown below:

I J 	NOT J I AND J I OR J I XOR J
0 0 	1 	 0 	8 	 8
8 1 	8 	8 	1 	 1
1 8 	1 	 8 	1 	 1
1 1 	8 	 1 	1 	 8

Logical operators are used in compound I F statements and in expressions where
it is required to examine or set individual bits in an 8 bit byte or in a 16 bit
integer. Integer values are stored in two's complement form.

Example: 10 IF A<B AND CO OR A$>B$ THEN 100
28 K=6 AND A OR I

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC LANGUAGE Expressions 	 2.3.6

2.3.6 ORDER OF EXPRESSION EVALUATION

The order of evaluation of expressions is from left to right if operators have the
same level of precedence. Otherwise, the operators with the highest order of
precedence are evaluated first. The order of precedence (which may be changed
by the use of parentheses) is given below.

Order Operation

1. Expressions within parentheses
2. A

3. - (negat i on)
4. *, \, /
5. +
6. =, <>,<, >, <=, >=
7. NOT
8. AND
9. OR, XOR

2.3.7 TYPE CONVERSION

Expressions will be evaluated according to the rules of precedence outlined in
section 3.7. Byte and Integer values are converted to real when they are
combined with a real value by an operator.

eg. 3*10. will result in the floating of the byte constant 3
before it is multiplied by the real constant 10~ to give

the real result 30. (Note that real values contain
decimal points)

Floating point division, I, always results in the conversion of both operands to
real numbers prior to carrying out the division.

eg. 3/30 will give the real result 0.3
13.\10. will give the integer result 1

Type conversion from integer to real or vice versa will be carried out
automatically when results are used as subscripts or function arguments or when
the results of expressions are stored in numeric variables. When an integer result
is required, a real value will be rounded and when a real result is required the
integer value will be floated.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC LANGUAGE
	

Specification Statements 	 2.4

2. 4 SPEC F I CAT I ON STATEMENTS

Specification statements are used to specify compiler options and to specify
variable types. Specification statements (if present) must appear at the beginning
of a program and in the same order as below, except that the REM statement
may appear anywhere in a program.

2.4.1 REM\OPTION

Syntax: REMOPTION 1 or 0

Purpose: Specifies whether the line number of each program line is to be output
in the compiled code. If an error occurs during execution of the
compiled program the line number of the statement in error will
be printed in the error message

Note 1) If the statement is omitted or REM\OPTION 0 is specified
then line numbers will not be output. If OPTION 1 is
specified, line numbers will be output.

2) The statement is useful when debugging a program,
however each line number output takes 3 bytes of memory
and increases execution time.

3) The statement must appear on a line by itself.
REM\OPTION will, of course, be ignored by ROM PAC BASIC.

2.4.2 DIM

Syntax: DIM list of subscr ipted array variables

Purpose: Specifies the maximum subscript values for each array.

Note 1) A maximum of 3 subscripts are allowed.
The base value for each subscript is 0 and the maximum
is 32767.

3) No array element may be referenced unless it has
appeared in a DIM statement. An array can appear in only
one DIM statement.

eg . DIM A(5,7,3),B(2"),X$(3,3)

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC LANGUAGE 	 Spec if i cation Statements 	 2.4.3

. 4 . 3 REMBYTE

Syntax: REM\BYTElist of array names

Purpose: Specifies which arrays are byte arrays

Note 1) The arrays must be declared as numeric arrays in a
previous DIM statement

2) Each byte array element occupies one byte of memory and
can store a value between 0 and 255. Byte arrays have
significant space and speed advantages over the default
'real' arrays.

3) The statement format was chosen so that it would be
ignored by ROM PAC BASIC.

eg. 10 DIM A(3,3),B(7),C$(15),D(5,2)
20 REM\BYTE A,D
A and D arrays are specified as byte arrays.

2.4.4 REMINTEGER

Purpose: Specifies which variables (scalar and array) are integer variables.

Note 1) Any arrays specified must be declared as numeric arrays
in a previous DIM statement

2) Each integer scalar variable and each integer array
element occupies two bytes of memory and can store a
value in the range -32768 to 32767. Integer variables
have significant space and speed advantages over real
and string variables

eg. 10 DIM A(2),X(5,7,3)
20 REM\INTEGER A,I,J,K,L2,84
A is specified to be an integer array and I,J,K,L2 and
B4 are specified to be integer scalar variables.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC LANGUAGE
	

Specification Statements 	2.4.5

2.4.5 CLEAR

Syntax: CLEAR texpressiontexpression)...]

Purpose: Ignored by the compiler. This statement is included to retain
compatability with the ROM PAC.

2.4.6 REM

Syntax: REM [any string]

Purpose: Allows comments to be included in a program.

Note 1) A REM statement must be the last statement on a line
2) The statement is ignored by the compiler and does not

generate any code.
3) REM statements may appear anywhere in a program.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC LANGUAGE
	

Assignment Statements 	 2.5

2.5 ASSIGNMENT STATEMENTS

Assignment statements are used to store the value of an expression in a variable.
The two assignment statements are LET and MI D$

2.5.1 LET

Syntax: (LET) variable = expression

Purpose: Set a variable (scalar or array element) equal to the value of an
expression.

Note 1) The keyword 'LET' is optional
2) The variable type (byte, integer, real, string) must be

compatible with the expression and visa versa. If the
variable is numeric, the value of the expression will be
rounded to integer or converted to a real if required,
before it is stored in the variable. An error occurs if
the expression is outside the range of values that the
variable can store. For example, an error will occur if
a negative value is stored into a byte array.

2.5.2 MID'S,

Syntax: MIDS(X$,I ,J)=string expression

Purpose: Replaces part of the string variable X$ (J characters starting at the
I'th position) with the value of the string expression.

Note 1) X$ is a string scalar variable or array element
2) A maximum of J characters of the string expression are

stored in X$
3) An error occurs if I or J is <8 or >255
4) No characters will be stored if X$ is null or the string

expression is null, or DLEN(X$), or J=0
5) X$ is not affected by the MID$ statement

The MID$ statement has been included in the BASIC COMPILER (it is not
available in the ROM PAC BASIC) because of its power and speed. MID$ is also
used as a function to extract part of a string. See section 2.10.3

eg. 10 A$=nABCDEF"
20 MIDS(A$,3,2)="XV:REM A$ is now nABXYEF"

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC LANGUAGE
	

Flow Control Statements 	 2.6

2.6 FLOW CONTROL STATEMENTS

2.6.1 GOTO

Syntax: GOTO line number

Purpose: To branch to a specified line and continue processing at that line.

Note 	If the statement at the specified line is not
executable, processing continues at the next executable
statement

Example: 10 GOTO 100

2.6.2 GOSUB

Syntax: GOSUB line number

Purpose: To branch to a subroutine

Note 1) The program branches to the specified line number and
continues processing from there until a RETURN statement
is encountered.

2) When the RETURN statement is executed the program
branches back to the NEXT statement after the GOSUB.

3) When a GOSUB statement is executed the program return
address is pushed onto the system stack. If more than
about 10 GOSUB's are nested the Run Time Support System
will return an FC ERROR.

Example: GOSUB 2010

2.6.3 RETURN

Syntax: RETURN

Purpose: The program continues execution at the statement following the
GOSUB statement which called the subroutine.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC LANGUAGE
	

Flow Control Statements 	 2.6.4

2.6.4 IF — THEN — ELSE

Syntax: IF expression THEN statement(s) [ELSE statement(s)3
IF expression THEN statement(s) [ELSE line number]
IF expression THEN line number [ELSE statement(s)]
IF expression GOTO line number [ELSE statement(s))

Purpose: Allows the optional branching or execution of statements based on the
value of an expression.

Note 1) There can be only one IF THEN statement per line.
ie. IF A=1 THEN IF 8=2 THEN C=0 is illegal.

2) If the expression is true (ie non zero) then the THEN
clause will be executed, or the program will branch to
the line number in the THEN or GOTO clause.
If the expression is false (ie. zero), the program will
execute the ELSE clause or go to the line number
specified in the ELSE clause. If the expression is false
and no ELSE clause exists the program continues
execution at the line following the IF statement.

eg.
10 IF A=5 THEN 8=2:C=3:GOTO 50
28 IF A(3 THEN PRINT "LESS THAN" ELSE PRINT "GREATER"
30 IF A=4 THEN B=1:C=2 ELSE B=4:C=0
40 IF A=1 THEN GOTO 50 ELSE 68
50 IF A=1 THEN 70

2.6.5 FOR — NEXT

Syntax: FOR variable=expl TO exp2 [STEP exp3]

E... other statements]

NEXT (variable)E,variable]...

where variable is an integer or real scalar variable and
expl, exp2 and exp3 are numeric expressions.

Purpose: The statements between the FOR and the NEXT are executed a given
number of times.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC LANGUAGE
	

Flow Control Statements 	 2.6.5

Note 1) When encountering this statement, the Compiler generates
code which:

a) calculates expl and stores the current value of the
variable.

b) calculates exp2 and exp3 (if present) and determines
the number of times which the loop will be executed.

c) checks whether the number of trips through the loop is
zero and by-passes the loop if so. Otherwise it will
execute the loop the given number of times, regardless
of whether or not the value of the variable is modified
by the code within the loop. The user may, if he wishes,
branch out of the loop using GOTO.

d) each time the NEXT statement is encountered, the
variable will be incremented by the value of the step
expression. (exp3).

2) If the step is not given , a valve of 1 is assumed.
3) A significant speed advantage is gained if the variable

used is an integer variable, in which case the resulting
expressions will be rounded to integers. If the variable
is an integer the values of the expressions must lie in
the normal range for integers. ie. -32768 to 32767

4) The NEXT statement associated with a FOR statement must
appear after the FOR statement in the program.
ie. 10 S=8:GOTO 30

20 NEXT X:GOTO 48
39 FOR I=1 TO 10:S=S+I:GOTO 28

This is not allowed by the Compiler as the NEXT precedes
the FOR.

5) The maximum number of trips in a FOR-NEXT loop is
restricted to 32767.

6) Only I NEXT may be. associated with a FOR
ie. 10 FOR J=1 TO 10

20 IF PS THEN A=A+J:NEXT:GOTO 70
30 A=A-J:NEXT

This is not allowed by the compiler.
7) FOR NEXT loops may be nested to a maximum depth of 10.
8) If program control jumps into the range of FOR-NEXT

loop, the NEXT statement will be ignored by the Run Time
Support System.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC LANGUAGE

2.6.6 ON

Flow Control Statements 	 2.6.6

Syntax: ON expression GOTO list of line numbers
ON expression GOSUB list of line numbers

Purpose: To allow a program to branch to one of a number of line numbers or
one of a number of different subroutines. The value of the
expression is rounded to an integer, n. The n'th line number is
then used in the GOTO or GOSUB.

Note 1) In the case of ON - GOSUB processing will return to the
statement following the ON - GOSUB statement.

2) If the expression is 8 or greater, then the number of
line numbers processing continues with the statement
following the ON - GOTO or ON - GOSUB statement.

3) If the expression is negative or greater than 255, an
error message will be displayed.

Examples: 18 ON I GOTO 16,50,180
28 ON I+A(J) GOTO 18,58,188

2.6.7 STOP

Syntax: STOP

Purpose: To terminate program execution. The Run Time Support System will
display the available options for the user to make his choice.

Note: When execution terminates, an option menu will be displayed.

2.6.8 END

Syntax : END

Purpose: Same as STOP.

BASIC COMPILER Ver 1.2 	Copyright Cc) November 1982 System Software

BASIC LANGUAGE
	

Input/Ouput Statements 	 2.7

2.7 INPUT/OUTPUT STATEMENTS

Input and output statements are used to transfer data between variables and
memory or variables and external devices. A number of BASIC functions also
perform input/output operations (eg PUS SPC, TAB, PEEK , INP INKEY)

2.7.1 INPUT

Syntax:
INPUT ("prompt string";) list of variables or array elements

Purpose: To input data values from the terminal and store them in program
variables.

Note 1) The 1 ;" following the optional 'prompt string' may be
replaced by a 1 ,'

2) On encountering the command, the program will display
the prompt string if any, and then prompt the user for
input by displaying

3) If fewer values are entered than variables in the list,
the program will prompt with a "?" until all values have
been entered.

4) Values entered are separated by commas. Strings entered
need not be enclosed by quotation marks unless they are
to contain leading or trailing spaces or commas.

3) Entering carriage return only will cause the entry of a
null string or a zero numeric value.

6) Entering "2" anywhere in the input line will, generate a
carriage return and allow the user to re-enter the line
from the beginning.

7) RUBOUT may be used to delete characters
8) All other characters will be entered into the input

buffer, whether ASCII or graphic, printing or non-
printing except for CTRL C, which will abort the program

9) If an error is detected, the user will be prompted with
the message REDO at the appropriate location.

18) The maximum line length of an input string may be 125
characters. The input buffer may be found at Hex
locations F883 through F87F.

BASIC COMPILER Ver 1.2 	Copyright Cc) November 1982 System Software

13441c LANPUAK 	 InoutiOuput Statements

2.7.2 READ

Syntax: READ list of variables or array elements

2.7.2

Purpose: Obtain the next available item from the current DATA statement or,
if that is exhausted, from the next DATA statement

Note 	Refer to the DATA statement for further details.

2.7.3 DATA

Syntax: DATA list of string and numeric constants

Purpose: To provide a list of constants to be read by a READ statement.

Note 1) READ accesses the constants in a DATA statement until
the list of constants is exhausted, at which stage
constants are then read from the next sequential DATA
statement. The RESTORE statement may be used to revert
to a previous DATA statement.

2) String constants need not be delimited by double quotes
unless they contain commas or significant leading or
trailing spaces.

3) An error will occur if non numeric data is READ into a
numeric variable.

4) A DATA statement must be the last or only statement on a
line.

5) DATA statements can appear before or after the
associated READ statement.

eg. 188 FOR 1=1 TO 5:READ X(I):NEXT
185 DATA 20,30,40,50,68,APX,7
118 READ A$03

2.7.4 RESTORE

Syntax: RESTORE Mine number)

Purpose: Resets the DATA statement pointer to the first DATA statement
to allow the data to be READ again. If the line number is
specified, the DATA statement pointer will be set to the
specified DATA statement.
eg. 28 RESTORE 36

38 DATA 1,2,3

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC LANWApE

Input/OuDut Statements 	 2.7.5

2.7.5 PRINT and PRINT&

Syntax: PRINT Hist of expressions]
PRINT& I,J [;Iist of expressions]

Purpose: Each expression in the list of expressions is evaluated and then
displayed on the screen. In the PRINT& form, the cursor will
be moved to the row and column, given by the initial two
integer expressions respectively before displaying the values of
the expressions.

Note 1) If PRINT is not followed by a list of expressions a CRLF
will be printed.

2) A semicolon separating the items causes the expressions
to appear adjacent to each other.

3) On encountering a comma in the list of expressions, the
cursor will print spaces to the start of the next 14
character print zone.

4) Before printing a value, the program will check to
ensure that the value will fit on the current line
otherwise it will print it on the next line.

5) Numeric values printed will be followed by a space. A
minus sign or a space will be printed in front of the
number.

6) The second form of the PRINT statement, PRINT&, allows
the user to position the cursor to the row and column
determined by the two integer expressions. If I or J are
real expressions, the value will be rounded to an
integer. The position 1,1 (row 1, column 1) is at the
top left of the screen. The second integer expression
can be followed by a 1 ,1 instead of the

eg. 188 PRINT "SIZE="0
128 PRINT& 1,28rTOP OF SCREEN"

2.7.6 SET

Syntax: SET I ,J
Purpose: Places a 1/6 character size dot on the screen at position I,J. I is the

horizontal offset from the left of the screen and must lie
between 8 and 127 inclusive. J is the vertical offset down from
the top of the screen and must lie between 9 and 89 inclusive.
If I or J are reals, the value will be rounded to an integer.

eg. 188 SET 6,28
128 SET X 5 Y

BASIC COMPILER Ver 1.2 	Copyright Cc) November 1982 System Software

BASIC LANGUAGE Input/041mi Statements 	 2.7.?

 2.7.7 RESET

Syntax: RESET I, J
Purpose: Clear the dot at position It J. This is the inverse function to SET

function. See SET .

2.7.8 CLOAD*

Syntax: CLOAD* cassette unit number, numeric or string array.

Purpose: To load data from a cassette into an array.

Note 1) The cassette unit number must be a byte constant or
integer scalar variable with a value of I or 2

2) Byte, integer, real or string arrays may be loaded.
3) The data on cassette must have been written using a

CSAVE* command running under the Run Time Support
System.

4) The array loaded must match in both type and number of
elements with the array saved.

egl. 18 DIM A(188)
58 CLOAD* 1 ,A

eg2. 18 DIM X$(5)
28 REM\INTEGER
38 J=2:CLOAD* J,X$

2.7.9 CSAVE*

Syntax: CSAVE* cassette unit number, numeric or string array.

Purpose: To save the contents of a numeric or string array on cassette tape.
Reverse operation to CLD*.

Note: 	The file is saved in the standard Exidy format, with the
name of ZDATA, allowing it to be loaded with the monitor
command: LU

eg. 18 DIM A(188),X$(5)
28 REM\INTEGER K

ill

38 K=1:CSAVE* K,A
48 CSAVE 21)4

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC UNIMAK 	 Input/Output Statements 	 2.7.18

2.7.10 POKE

Syntax: POKE I,

Purpose: Stores a byte value in the given memory address.

Note 1) The , low order byte of J is stored at the memory address
specified by I.

2) If I or J are byte or real expressions they are
converted to integer values before being used.

3) To store a byte at a location > 32767, the address
should be specified as = required address -65536.

4) The PEEK function (section 2.18.4) is used to get the
value of a byte in memory.

2.7.11 OUT

Syntax: OUT byte expression 1, byte expression 2

Purpose: Translates the byte given by byte expression 2 to the output port
specified by byte expression

Note: 	The INP function (section 2.18) is used to get a byte
from an input port.

2.7.12 WAIT

Syntax: WAIT I,J,Elexp3)

Purpose: Wait until a specified bit pattern appears at a specified input port.
Notes: The status of the port given by I is XORed with iexp3

(integer expression 3) (or zero if omitted) and then
ANDed with J. The program waits until a non-zero value
is returned.

eg. 188 OUT 254,11
128 WAIT. 254,2,2
This will cause execution to halt until the 'RETURN' key
is depressed. The OUT statement specified the section of
the keyboard we wish to test. The WAIT statement waits
for bit 1 become set, indicating the 'RETURN' key is
being depressed.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC LANGUAGE User Defined Functions 	 2.8

2.8 USER DEFINED FUNCTIONS

The BASIC compiler includes a number of pre-defined BASIC functions which can
be used to return a single value. In a similar way a user can define his own
functions, using a single BASIC statement to define the operations of the
function.

2.8.1 DEF FN

Syntax: DEF FNname(parameter)=expression
Purpose: To define a user function.

Note 1) 'name' must be a legal real variable name. 'name'
prefixed by FN becomes the name of the function. 'name'
cannot be used as a variable name in the program.

2) 'parameter is a legal real variable name which is used
as a dummy name in the function definition. 'parameter'
can be used as a real variable elsewhere in the program
and its value is not altered by the DEF FIN statement or
when the user function is referenced.

3) 'expression' in a numeric expression whose value
(converted to a real if necessary) is returned when the
user function is referenced.

4) 'expression' may not contain any variable other than
'parameter'.

5) The DEF FN statement must precede any statements which
references the function which it defines.

eg. le DEF FINA(R) 3.14159265*R*R
28 T=FNA(7)-FNA(3)

BASIC COMPILER Ver I.2 	Copyright (c) November 1982 System Software

BASIC LANGUAGE User Assembl y Rou t ne 	 2.9

2.9, USER ASSEMBLY ROUTINES

The USR function allows a BASIC program to call user written assembly
language routines (Routines written in Z80 machine code). Because the BASIC
COMPILER is many times faster than ROM PAC BASIC, the need for assembly
language routines is reduced. However, there may be situations where such
routines may be required. The steps involved in using assembly language routines
are:

1. Write the assembly language routine.
2. Determine a suitable position in memory to place the

routine. From location 0 to FF (Hex) is not being used,
unless you are running CP/M. User graphics area is
programmed every time the Run Time Support System
initializes and locations F003 to FO7F (Hex) are also
used. The user may safely choose memory above the Run
Time Support System. String and temporary information
area grows downward in memory from the Run Time Support
System to 100 (Hex), so this area should not be used.
See Appendix C.

3. Store the routine in memory by loading it from cassette
or by POKEing it into memory with program statements

4. POKE the low and high bytes of the starting address of
the routine into locations 184H and 105H (260 and 261
decimal).

5. Call the routine with a USR function call with an
integer argument. On entry to the routine the argument
is stored in the HL register. On return from the routine
the value of HL is returned as the value of the USR
function.

2.9.1 USR(X)
Purpose: Calls a user assembly language routine.
Note 1) The argument X is an integer expression or a real

expression that will reduce to an integer and is stored
into register HL before control is passed to the users
assembly language routine. The value in HL upon
returning from the routine is passed as the value of the
USR functiop. This allows the user to pass a single
parameter to and from the assembly language routine. It
also allows the USR function to be used in the same way
as any other BASIC function such as POS or SIN.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC LANGUAGE
	

User Assembly Routines 	 2.2.1

2) Causes a call to location 103H. Location 103H contains
the code for a 280 jump. Locations 104H and 105H must
contain the low and high order bytes of the address of
the machine code subroutine provided by the user.

The following program POKEs a machine code program into memory and then
calls it using the USR command. The example below fills the screen with the
character typed on the keyboard:

REMINTEGER I,J,X,Y
10 DATA 125,33,128,240,17,129,240,1,0,8,119,237,176,201
15 POKE 260,0:POKE261,0
20 FOR 1=0 TO 13:READ J:POKE I,J:NEXT I
30 PRINT CHR$(17):FOR I=0 TO 28:PRINT:NEXT
40 INPUT "TYPE A CHARACTER TO FILL SCREEN";A$:K=ASC(A$)
50 U=USR(K):GOTO 38

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BALI C LN66E Basic Functions 	 2.18

2.18 fAsic FUNCTIONS

The BASIC COMPILER includes a number of pre-defined BASIC functions. When a
function is referenced in an expression it returns a value which is then processed
like any other value in the expression.

Notation used is as follows:

I,J 	any integer expression
X,Y 	any real expression
X$,Y$ any string expression

Functions require one or more arguments enclosed in brackets. If an integer
argument is given in place of a real argument the compiler will convert the
argument to a malt and similarly where an integer is required a real number will
be rounded to an integer.

. 18 . 1 MICR I C FIN I OM

ABS(X)
Returns the absolute value of the expression, X

EXP(()
Returns the constant 'e' raised to the power X. It is equivalent
to eAX.

INT (X)
Returns the largest integer less than or equal to X. Integer
division may be implemented by using a back slash instead of a
forward slash. The statement: INT(R/4) is therefore equivalent
to (R\4) but the latter is much faster.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BA IC LANGUAGE

Basic Func ions 	 2.10.

1.0000
Returns the natural log of the expression X where X>0.

SeNa)
Returns 1 if X)0, 0 if X=0, or -1 if X(0

SQR(X)
Returns the square root of X, where X)=0

MOM
Returns a random number between 0 and X. X may be negative.

. 1 8 . 2 TR I GONOMETR I C

ATN(X)
Returns the arc tangent of X in radians. The result lies in the
range -P1/2 to PI/2 (Where PI=3.14159)

COS(X)
Returns the cosine of the X, where X is in radians.

SIN(X)
Returns the sine of the X, where X is in radians.

TAN(X)
Returns the tangent of the X, where X is in rad ans.

2.18.3 STRING FitICTIONS

String functions return integer, real or string values depending on the function.

ASC(X)
Returns the ASCII code of the first character of the string, X.
IF X$ is null, the error message 'ILLEGAL FUNCTION CALL' will
result.

eg. 18 PRINT ASC("B"),ASC(W)

CHR$00
Returns a one character string in which the character has the
ASCII code given by the value X.

eg. 18 PRINT CHR$(45),CHR$(72)

BASIC COMPILER Ver 1.2 	Copyright Cc) November 1982 System Software

BASIC 	UA E Functe n 	 19 3/a

CV1(X$)
Functn: Convert, the first 2 bytes of X$ to a 2 byte integer

value. An error will occur if LEN(X$)<2. See also MK1$
for inverse operation.

eg. 10 PRINT CVI("AB")

CVS(X$)
Converts the first 4 bytes of X$ to a real number. If LEN(X$)<4
an error will occur. See also MKS$ for inverse operation.

INSTR(I,X$,Y$)
Starting at character position I in X$, INSTR searches for the
first occurrence of Y$ in X$. INSTR returns the values 0 if X$
is null or if no match is found or if 1>LEN(X$). INSTR will
return I if Y$ is null. Otherwise n is returned where n is the
position of the first character of X$ where a match was found.
The first character position of X$ is 1. An error occurs if I<0
or I>255.

eg 10 A$="ABCDEF":8$="CV:C$="CE"
20 PRINT INSTR(1,A$,B$),INSTR(2,A$,B$),INSTR(1,A$,C$)
This will print: 	3 3 0

LEFTCX$,I)
Returns the I characters to the left of X$

LEN<X$)
Returns the length of the string expression, X$

MIDCX$,I,J)
Return a substring of X$, of length J characters, starting at
the lith character of X$. An error occurs if I or J are <0 or
>255. A null string is returned if J=8 or if I>LEN<X$> or if X$
is null. If J is greater than the number of characters
available starting at the l'th character then only the available
.characters will be returned.

eg. 10 PRINT MIDWABCDP,2,3)
BCD

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BASIC LANGUAGE Basic Functions 	 4.10.3/b

MK1$(1)
Returns the 2 byte string representation,of the two byte iexpl.
See also CV1.

MI(SCX)
Returns the 4 byte string representation of the real expression,
X. See also CVS.

RIGHT$030)
Returns a string comprising the rightmost I characters of XS. If
I)=LEN(X$) then all of X$ is returned. A null string is returned
if X$ is null or 1=0. An error occurs if I<0 or 1)255.

eg. 10 PRINT RIGHTWABCDE",3)
CDE

SPC(I)
Returns a string of spaces of length I. See also section 2.10.4

STR$00
Returns the string representing the value of X. This consists of
the ASCII characters which would be printed if X were to be
printed. The first character will be either a space or minus
sign. See VAL for inverse operation.

VAL(X$)
Returns the value which is the numeric equivalent of the string,
X$. See also STR$ for inverse operation. The number is
terminated by the first non-numeric character of the string.if
the first non blank character of X$ is not 	or a digit the
return value will be 0.

eg. 10 PRINT VAL("0,53ABC"),VAL("ABC")
0.53 0

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

BAC LANGUAGE Basic Functions

2.10.4 INPUT/OUPUT FUNCTIONS

INKEY
Returns the integer equivalent of the ASCII code of the key
depressed on the keyboard. If no key has been depressed a zero
is returned. If a key is depressed, processing is halted until
the key is released. INKEY is not available in ROM PAC BASIC.
eg. J=INKEY

INP(I)
Returns the integer value of the byte from port I, where I is in
the range 0-255

PEEK(I)
Returns the value of the byte at memory address I. To PEEK at
an address higher then 32767, the value 65536 must be subtracted
from the address. For example, to PEEK at address 65535, PEEK(-
1) would be used.

POS(I)
Returns the integer value of the current print position. The
first character on a line is at position 1. I is a dummy
argument.

SPC(I)
Returns a string of length I containing all spaces.

eg. 108 PRINT SPC(10);
110 A$=SPC(20)

Unlike all other functions that return a string, SPC(I) does not
have a '$' before the first bracket character.

TAW')
Prints spaces to the l'th print position on the line. Ignored if
the print position is greater than I.

2.10.5 GENERAL

FRE(I)
Returns the number of bytes of memory that are not being used by
the BASIC ROM PAC or the user program. The value represents the
number of free bytes in string space before compaction. I is a
dummy argument.

BASIC COMPILER Ver 1.4 Copyright (c) November 1q82 System Software

PROGRAM DEVELOPMENT Di4ferences 	 3.8

CHAPTER 3. PROGRAM DEVELOPMENT

3.1 DIFFERENCES BETWEEN ROM PAC BASIC AND BASIC COMPILER

Every effort has been made to allow any ROM PAC BASIC program to run with
the BASIC COMPILER. However, because a compiler operates differently from an
interpreter, some restrictions had to be placed on the ROM PAC BASIC language.
It is unlikely that these restrictions will seriously inconvenience any user.

The BASIC COMPILER includes additional powerful features which save space,
increase speed and provide additional programming capability. Suggestions in how
to make the best use of the additional features are contained in section 3.2.

3.1.1 RESTRICTIONS ON THE USE OF THE ROM PAC BASIC LANGUAGE.

a) All arrays must be dimensioned explicitly and may have a
maximum of 3 dimensions.

b) All dimension statements must appear at the beginning of
the program, hence variables may not be used to assign
the dimensions.

c) No direct commands are available when the compiler is
running, unless the user returns to BASIC.

d) CLOAD* and CSAVE* require a 1 ,1 between the unit number
and the array name. The unit number must be specified
either as a constant or an integer variable.

e) Only one NEXT statement is allowed for each FOR
statement and the NEXT statement must appear in the
program after the FOR statement.

f) Only one IF THEN statement may appear on a program line.

BASIC COMPILER Ver 1.2 	Copyright Cc) November 1982 System Software

PROGRAM DEVELOPMENT 	Differences with the Compiler 	3.1.2

3.1 . 2 ADDI T I ONAL FEATURES AVAILABLE IN THE SICBA 	COMPILER

a) Byte and integer constants to save space and increase
speed

b) Integer variables and byte and integer arrays to save
space and increase speed.

c) An integer divide operator uN," to increase speed and XOR
operator to provide extra programming power.

d) Enhanced string handling methods to increase speed and
reduce the occurrence of compaction of the string space.

e) The MID$ assignment statement to increase speed and
avoid string space compaction.

f) The powerful IF - THEN - ELSE construction to simplify
programming

g) The PRINT& statement to position the curser anywhere on
the screen before printing

h) Graphics statements (SET and RESET) to turn on or turn
off a 1/6th of a character dot on the screen.

i) The CLOAD* and CSAVE* statements can utilize any type
of array, including string arrays. The array is saved in
the standard monitor format, allowing the user to load
with either CLOAD* or the monitor command LO.

j) RND(X) returns a real number between 0 and X. ROM PAC
BASIC returns a real between 0 and 1.

k) Additional BASIC string functions, CVI, CVS, MKI$, MKS$
and INSTR are provided.

l) The INKEY function allows the user to check if a key is
being depressed without having to write and call a
machine code routine.

m) The USR function allows the passing of a parameter to
and from the machine code routine. It also is
implemented like other functions and may be used in
statements such as: PRINT USR(4)

n) SPC returns a string. Thus PRINT SPC(I) works in the
same way as in ROM PAC BASIC, but in the same way as all
other functions. It may be used in a general way: eg.
AS=SPC(5).

BASIC COMPILER Ver 1.2 	Copyright Cc) November 1982 System Software

PROGRAM DEVELOPMENT 	Opt 'mil Ina. Program Performance 	3.2

3.2 OPTIMIZING PROGRAM PERFORMANCE

The BASIC COMPILER has been designed to generate very compact code which
executes as fast as possible. This section describes programming techniques which
can be used to take full advantage of the optimizations done by the compiler.

3.2.1 USE OF BYTE AND INTEGER CONSTANTS AND VARIABLES

Because they require much less space and provide for much faster program
execution, bytes and integers (constants and variables) should be used whereever
possible, in preference to reals and strings.

Even greater savings in space and time will be achieved if the user is careful to
structure his statements in the formats explained below.

In the following description, the variables v, vi, and v2 will be used to
represent any or all of the following:

I) A byte constant eg. 0,1 ,2,67,255
2) A positive integer constant eq. 0 ,256 ,580 ,32767
3) A integer scalar variable eq. I, A3 where I A3are integers.
4) A special form of an array. The array must be a byte or integer array with
one dimension and the subscript must be a single integer scalar variable eg.
A(J), K4(Li) where A and K4 are byte or integer arrays and J and Li are integer
scalar variables.

OPTIMIZED (FASTEST AND SHORTEST) FORMS OF THE LET STATEMENT

FORM 	 EXAMPLES

v=0 	 10 1=0 :A< 1)=0
v=1 	 18 I=1:A(I)=1
v1=v2 	 18 1=32880:A(1)=J
vl=v1+1 	 10 I-I+1:A(I)=A(I)+1
vl=v1-1 	 10 I=1-1:A(1)=A(I)-1
v1=v2 opr v3 	 10 1=J...425:A(I)=8(10*J
where opr is one of: +5 	*, \, I, 's 	(s >s (=s >=

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

PROGRAM DEVELOPMENT 	Oritimizino Proararn Performance 3.2.1/a

OPTIMIZED IF - THEN STATEMENT

The forms of the optimi2ed IF statement are:

IF vi relopr v2 THEN
IF vi relopr v2 GOTO

where relopr is one of: =, 	> $ <= >

Examples:

18 IF 1=32 GOTO 110
28 IF A(I)(1680 THEN PRINT I
30 IF A(I)(=B(J) THEN 1000

OPTIMIZED FOR - NEXT STATEMENT

The form of the FOR - NEXT statement which executes the fastest is:

FOR integer scalar variable = expressionl TO expression2

Note that the index is an integer scalar variable and that STEP is not included.
The expressions will be rounded to integers.

Examples:

10 REM\INTEGER I s J
28 FOR 1=1 TO 1080:J=I:NEXT
30 FOR I=J TO A(1)+4:J=A(1):NEXT

OPTIMIZED STRING OPERATIONS

The BASIC COMPILER provides two methods for speeding up string operations. The
first method is used to avoid string compaction and the second method provides
for very fast replacement of parts of a string.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

PROGRAM DEVELOPMENT 	Opt imiz ing Program Performance 3.2.1/b

AVOIDING STRING COMPACTION

The BASIC COMPILER allocates string space dynamically. Thus space is allocated
to string variables only when required. However, if a string is reduced in length,
a block of unused space is created. This block of space must be recovered by a
process called compaction. Similarly if a string is increased in length the string
will no longer fit into its existing space and either all strings below it must be
moved to make space or else new string space is allocated and a block of unused
space is created. This space will need to be compacted at some stage. Because
compaction can take a long time, it is best to avoid it if possible.

The BASIC COMPILER stores strings in such a way that compaction can be
reduced or even avoided completely. In addition to storing the length of each
string (eg. LEN (X$)) the compiler also stores the actual space allocated by the
string. Thus, if each string is initially set to the largest length it will occupy
during execution, then compaction will never be required, even if the length of
the string varies up and down. If it is not possible to set each string to its
maximum execution length then compaction may eventually occurr, as strings are
increased and reduced in length and blocks of unused space are created. However,
the number of times compaction occurs should be reduced.

To set a string to its maximum execution length it is not sufficient to set the
string to a string constant or to a variable which has been set to a string
constant. The reason is that the string constants are embedded in the compiled
code and if a variable is set equal to a string constant, the variable does not
occupy any space, it simply points to the string constant. However, if two string
constants are concatenated or if a string function is called, a new string is
created and a string variable can be set equal to this new string. The simplest
way of setting a string to its maximum execution length is to use the SPC
function.

A string can be set to its maximum length in the following ways:

1g AS=SPC(20)
20 AS= a
	

U if

The first statement using the SPC function is recommended because it takes much
less space in the compiled code.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

PROGRAM DEVELOFMENT 	Oirt imizinct Prooram Performance 3.2.1/c

In the following example, compaction will never occur.

18 REM\INTEGER I
28 A$=SPC(200):REM SET MAX LENGTH TO 209
38 A$=":REM SET LEN(A$)=0
48 REM NOW INCREASE LEN(A$) IN STEPS UP TO 280
58 FOR I=1 TO 200:A$=AWAn:NEXT I
68 GOTO 30:REM REPEAT THE PROCESS

SUBSTRING REPLACEMENT

Suppose string A$ is 8 characters long and it is required to replace characters
4 to 6 with a new string X$ of length 3. The normal way to do this is as
follows:

18 AS=LEFTVAS,3)+X$+RIGHTVAS, 2)

A neater and much faster alternative is using the left hand MI D$ statement:

18 MIDCAS,4,2)=X$

The MI D$ statement can also be used to replace the first or last groups of
characters of a string by setting appropriate values for the Ml 	arguments.

GENERAL HINTS TO OPTIMIZE PROGRAM PERFORMANCE

The following programming techniques may be useful in reducing program size,
increasing execution speed or to simplify program complexity.

1) Not outputing line numbers in the compiled code. See OPT I ON.
2) Using the IF - THEN - ELSE form if the IF statement
3) Using PRINT& to position the cursor.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

PROGRAM DEVELOPMENT 	Application Examples 	 3.3

3.3 APPLICATION EXAMPLES

3.3.1 PRINTER INTERFACE

If a printer is connected to the Sorcerer, the user may print the characters
appearing on the screen by:

a) using the monitor SE 0=L command if the printer is Centronics or
b) setting the output to an assembly language routine with the

SE WX.X:XX command.

The same result may be achieved with the use of the following BASIC routine:

100 REM PRINTER ON: H=233, L=147
118 REM PRINTER OFF: H=224 1 L=27
120 T=PEEK(-4096)+256*PEEK(-4095)-46
130 IF T>32721 THEN T=T-65536
148 POKE T,H:POKE T-1,L

The above program finds the top of RAM, calculates the address of the output
vector in the MWA and POKEs in H and L. H and L must be set to 233 and
147 respectively, if it is to substitute for the monitor SE 0=L command. If a
special driver is being used, different values for H and L must be employed. H is
the high order byte of the address of the assembly language routine while L is
the lower. This routine may be called as a subroutine from within a BASIC
compiled program.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

PROGRAM DEVELOPMENT
	

Application Examples 	 3.3.2/a

3.3.2 USING THE COMPILER WITH DISKS

A) USING DISKS WITH THE COMPILER

The Compiler and compiled code may be used together with disks in a limited
way assuming the user has:

1) A floppy disk drive system running CP/M
2) More than 32K RAM

It is an advantage to have the disk controller set up so that the user may boot
the disk drive with the BASIC ROM PAC inserted. Often the disk drive uses the
same memory as the ROM PAC as DMA area. MICROPOLIS, VISTA and FDS drives
may be modified to use another area.

If the disks and ROM PAC can be used at the same time, the user may wish to
save the compiler onto disk and eliminate the need to load it from cassette. This
may be accomplished by:

1) Insert the BASIC ROM PAC and turn on the Sorcerer
2) Save the BWA by typing:

BYE
MO 188 288 FE00

3) Boot the CP/M disk. The CP/M should sit as high in memory as possible
and should be well above 32K so that it does not use memory below 8000
(Hex).

4) Enter the monitor by typing:
DDT
6E883

5) Move back the BWA by typing: MO FE00 FF00 180
6) Now LOG the 32K version of the Compiler from cassette. When loaded

the compiler will give a CN ERROR because no BASIC source is
available to compile.

7) Type BYE to re-enter the monitor and then give the monitor command
GO 0 to Warm Start CP/M.

8) Save the compiler on disk with the CP/M command:
SAVE 127 COMP .COM

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

PROGR(*I DEVELOPMENT
	

Application Examples 	 3.3.2/b

To load the compiler from disk, simply boot the disks with the BASIC ROM PAC
inserted and type: COMP. The compiler will load, give a CN ERROR and
return you to BASIC, ready for compilation. Your BASIC program may either be
typed in or CLOADed at this stage.

It is interesting to note that if a BASIC source program was in memory at step
7 above, it would have been saved along with the compiler and would be loaded
back into memory at this stage, ready for compiling or continued de-bugging.

B) USING DISKS WITH THE COMPILED MODULE

It is not necessary to have the ROM PAC inserted in order to use the LGO
module. If the LGO module has been developed with CF/N as explained above, it
may be saved on disk by following the above instructions from point 7. The only
difference being 1) Enter the monitor with Option 2 (Displayed by the Run Time
Support System) after creating the LGO module and 2) choosing a different name.
The extension should still be .COM.

The module can then be loaded and executed at any time, with or without the
ROM PAC being insterted.

C) PASSING DATA TO AND FROM DISK

Data may be saved and retrieved from disk in a limited way from within a
running LGO module. Simply have the LGO module POKE data into memory
between 32K and the bottom of CP/M before ENDing and then return to CP/M by
typing GO 8. The data and LGO module may be saved on disk with the same
CP/M command used to save the LGO module originally. The data may then be
PEEKed out of memory on the next run. Note that HEX location 1E37 and 1E8
contain the pointer to the lowest available memory which the compiler will use.
This is normally set to 1D5, but may be changed to point to higher memory in
order to reserve some memory for the user. The user should not corrupt memory
from 0000 to 011)5 HEX.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

PROGRAM DEVELOPMENT
	

Application Examples 	 3.3.4/b

3.3.3 FULL EXAMPLE IN USING THE COMPILER

The following is an example in using the compiler with graphics. Firstly turn on
the Sorcerer with the BASIC ROM PAC inserted then type in the following
program:

5 DIM S(28),T(28)
8 REM\BYTE S,T
JO REM\INTEGER X,Y,A,B,C,D
13 D=18
15 PRINT CHR$(12);CHR$(1);
28 X=RND(30)+3:Y=RND(30)+3:A=1:8=1
38 C=C+1:IF C=D THEN C=8
35 RESET S(C),T(C)
48 SET X,Y:S(C)=X:T(C)=Y
58 IF X=127 THEN A=-1
55 IF X=1 THEN A=1
60 IF Y=89 THEN 8=-1
65 IF Y=1 THEN B=1
78 X=X+A:Y=Y+8
80 IF INKEY=0 THEN 30

Now type BYE and LOG the compiler. After loading, the compiler will
execute and compile the above BASIC program. The compiling process will take 8
seconds. When compiling is complete, a menu will be displayed. If an error was
displayed, choose option 3 to return to BASIC, fix the error, type BYE and
then type GO 188 to re- compile.

If no error was found, you may now choose option I, to execute the compiled
code. The screen should clear and a worm move around the screen. To abort
execution, hit any key, whereby the menu will again be displayed. Choose option
3 to return to BASIC and change line 10 to 0=28 and then type BYE
followed by GO 180 to re-compile. Execute the compiled code again and notice
the difference to the length of the worm.

You may now choose to create a LGO stand-alone module. This procedure creates
a machine code program that can execute without the compiler or BASIC ROM
PAC in memory. Choose option 4. A new menu will now be displayed. Choose to
return to the Exidy monitor and note that the start and end locations of the
stand-alone module are printed. You may execute the program by typing GO
188 and/or save the program again on cassette or disk.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

OPERATING INSTRUCTIONS 	 4.9/a

CHAPTER 4. 	COMPILER OPERATING INSTRUCTIONS

The following steps are followed in order to compile a program.

1) Load the BASIC ROM PAC and turn on the power.
2) Load the source program from the cassette if it is already saved, else

enter it from the keyboard. Debug the program in the normal way by
using the ROM PAC. The user is advised to save the BASIC source on
cassette before compiling.

3) Return to the monitor with the BASIC command: BYE
4) Load and execute the compiler with the monitor command: LOG. The

source program will be compiled and the resulting object code will be
stored in memory above the BASIC source code. If errors are
encountered, error messages will be displayed on the screen. The errors
must be corrected before running the compiled code. This is explained
below.

When the compilation is complete, the compiler presents the user with a menu
and the choice of returning to the monitor, returning to ROM PAC BASIC to
modify or correct the source program, running the program which has just been
compiled or creating a 'Load and Go' (LGO) module. This module consists of the
object code produced from the compilation and the run time support system. It
may be saved on cassette for subsequent execution.

If errors are detected, the user may choose the option to return to BASIC, in
which case the compiler will execute a Warm Start to BASIC. The source program
is still in memory and available for the user to modify. The monitor stack and
BASIC string stack have been moved below the compiler and Run Time Support
System to ensure that the user may edit or run the program within the ROM PAC
BASIC system without affecting the area of memory occupied by the compiler.
When the program is again ready to compile, the user returns to the Exidy
monitor by typing BYE then enters the compiler by typing GO 100. Again,
the user is advised to save the BASIC source.

If compilation was successful, the user may wish to choose the option of running
the compiled code. It is possible to interRupt the program while it is executing
by entering CTRL C or RUNSTOP. The former aborts the program and again
presents the menu while the latter temporarily halts execution until any other
key is hit. At the conclusion of the run, the menu will be presented.

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

OPERATING INSTRUCT I (NS 	 4.0 .b

While it is possible to return to the Exidy monitor (with a warm start) directly,
the user is cautioned that before saving the compiled program on cassette, it is
necessary to create a 'Load and Go' module. When the user chooses to create
such a module, the compiled object program is moved below the . Runtime Support
System to overlay and replace the compiler. Once this is done, the options
available to the user are running the 'LGO' Module, returning to the Exidy
Monitor, or saving the module on cassette.

If the user decides to run the IGO' module, the Run Time Support System
assumes that all memory before it is available for data. The original Basic source
program may well be overwritten at this stage, and the user is advised to store
the source code on cassette prior to compilation. Again, the user may abort the
run or pause by typing CTRL C or RLENSTOP respectively. At the end of
execution, the Run Time Support System will again display the three options.

When the user is satisfied with the compiled program he may save the IGO'
module on cassette by choosing the appropriate option. After saving the program,
the Run Time Support System will again display 3 options. The user may choose
to return to the Exidy Monitor, whereby the starting and ending addresses of the
memory occupied by the module and the GO address are displayed. The GO
address for LOG execution is automatically entered into the Monitor Cassette
header block. The user will then save the module using the monitor command
SA.

BASIC COMPILER Ver 1.2 	Copyright Cc) November 1982 System Software

APPENDIX A — ERROR MESSAGES

Error messages at compilation

CE 	Expression too complex
DO 	Redefined array
DL 	Duplicate line number. See note below
IC 	Illegal character in BASIC program
IF 	Illegal function name or error in function definition
IV 	Illegal Variable
LO 	Line too complex. Divide into two separate lines
MI 	More than one IF statement on a line
NF 	Unmatched FOR or NEXT
NL 	Line number missing or error
RC 	Error in real constant definition
SN 	Syntax error
SO 	Statement out of order
ST 	String formula too complex
TM 	Type mismatch
TO 	User symbol table overflow
UF 	Undefined user function
UL 	Undefined line number referenced

Error messages at execution

BS 	Bad subscript
CN 	Can't continue. No program or continue after error
FC 	Illegal function call. Possibly caused by: a) LOG with

argument <=0, b) SO with argument <0, c) A to the
power of B with AO, d) call to USR with address of
assembly language, e) routine not set, f) parameters
outside allowed range, g) RET without a GOSUB

LS 	String too long
OD 	Out of data
OM 	Out of memory- program and data too large. Try creating

an LGO module
OS 	Out of string space
OV 	Overflow

Divide by zero occurred

Note: If an UL error is found during compilationt several internal counters are
corrupted and DL errors will be printed. Simply correct the UL error and re-
compile.

BASIC COMPILER Ver 1., 	Copyright (c) November 1982 System Software

APPENDIX B - RESERVED WORDS

ABS AND ABC ATN BYTE CHR$ CLEAR
CLOAD* COS 	CSAVE* CVI 	CVS 	DATA DEF
DIM 	ELSE 	END 	EXP 	FN 	FOR 	FRE
GOSUB 	GOTO 	I F 	INKEY 	INP 	INPUT 	INSTR
INT 	INTEGER LEFT$ LEN 	LET 	LOG 	MI CA

MK I $ 	MK S$ 	NEXT 	NOT 	ON 	OPT I ON OR
OUT PEEK POKE PH PRINT READ REM
RESET 	RESTORE RETURN RI GHT$ RNID 	SET 	SGN
SIN SPC SIR STEP STOP STR$ TAB
TAN THEN TO USR VAL WAIT XOR

APPENDIX C - CalP IK-ER MEMORY MPS

1. Notation: RTSS - Run Time Support System
LGO 	Load and Go module
MWA 	Exidy monitor work area
BWA - BASIC ROM PAC work area

Note that the Compiler is a compiled BASIC program running under the RTSS.

2. Memory map immediately after compiler is loaded and initialized and where no
BASIC source is present.

32K or 48K
HI GH MEM :
	

RTSS

Compiler

MWA 	 : Moved here at initialization

Free Space
1D5H

L OW MEM : 	BWA
100H

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

APPENDIX C Continued...

1. Memory map while compilingt or while a compiled program is running (before
an LGO module has been created).

32K or 48K
HIGH MEM : 	RTSS

Compiler

MWA

RTSS data space
(Grows downwards)

:Resulting compiled code:
(Grows upward)
	 pointed to by (187,8)

:Basic source program
1D5H

BWA
LOW MEM 	 100H

NB. Diagrams not to scale.

3. Memory map after LGO module has been created or is executing.

	 32K or 48K
HIGH MEM : 	RTSS 	 : The LGO module consists

of both the RTSS and the
Compiled Code 	 compiled program.

MWA 	 : Moved here by RTSS

MID MEM : 	RTSS Data Area
Grows downward

LOW MEM 100H

4. On return to Exidy monitor after creating a 'Load and Go' module.
	 32K or 48K

HIGH MEM : 	Monitor Work area

: Load and Go Module 	: (consists of RTSS and
MID MEM 	 compiled code.)

BASIC COMPILER Ver 1.2 	Copyright (c) November 1982 System Software

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55

