E G6 LD ec &1 TE 47

JAIE 3191
FGEB GSKF

DEBUG

A Program for Debugging Machine Language

Product
of

Programs for the EXIDY SORCERER
By Bob Pierce

Single step processing of machine language instructions
Multiple breakpoints

Option to execute CALLS in a single step

Several display options

Relocatable

@ QUALITY SOFTWARE

Published By Quality Software
©1979 by Bob Pierce. All rights reserved.
No part of this publication may be
reproduced without prior written consent,

LOADING INSTRUCTIONS

To run DEBUG follow these instructions. If you are in BASIC, enter the
Sorcerer Monitor by typing BYE. Then type

= LOG DEBUG

If you are going to load another program after you have loaded DEBUG, it is
better to load DEBUG without running it by typing

= LO DEBUG

Once your machine language program is loaded, you may execute DEBUG from
the Monitor by typing

> GO 1000

You may exit DEBUG and return to BASIC or the Monitor by pressing RESET;
however, occasionally this can destroy the program.

GETTING FAMILIAR WITH DEBUG

If you have just received a copy of DEBUG, you might like to follow this
example to become acquainted with some of the capabilities of DEBUG. Load
the program as outlined in the LOADING INSTRUCTIONS. Once the copyright
message appears, enter Y to the question DO YOU WISH TO MOVE DEBUG?
Enter 100(RETURN) when RELOCATION ADDRESS appears. A message
stating that you have moved DEBUG to 0100-OFAF will appear along with the
Sorcerer Monitor = prompt. This creates a second copy of DEBUG. The original
will still be located at 1000-1EAF. Enter the Monitor command GO
1000(RETURN). The same copyright message will appear. This time answer the
question about moving DEBUG with an N. Enter 141(RETURN) to the
START ADDRESS prompt.

At this point you will have a display of the contents of registers and memory
similar to that on the instruction booklet cover. Observe the values in the
registers H and L. The first two instructions pointed to by the Program Counter,
PC, will be DD instructions that load L and then H. These registers will be
loaded with the first two values that are pointed to by the IX register. Press the
space bar twice and observe that the values in L and H become the values
pointed to by IX. Note that the Program Counter has increased to 0147 an
points to the one byte instruction 7E, i.e. LD A, (HL). This instruction load
into A the value that is pointed to by the pair HL. Hit the SPACE BAR a third
time and observe that register A contains this byte.

Enter the Command Mode by pressing C and observe the > on the bottom
line verifying this. Enter 1000V(RETURN) and observe that 48 bytes of
memory starting at address 1000 are displayed. Press ; several times and follow
by pressing — several times to see the display incremented and decremented by
48 bytes. Press the SPACE BAR to return to the Command Mode. Enter 1000P
to see a page of data from memory displayed. Again use the ; and — keys to
change the display.

Return to the Command Mode by pressing the SPACE BAR. Enter 1FOOL
to load memory at 1F00. Enter AB CD EF(RETURN). View memory at 1F00
as before to see that these three bytes have been loaded into memory. Return
to the Command Mode by pressing SPACE BAR and press R. Enter A=77(RE-

L

1 e

TURN) and notice that register A will contain 77. Now press G and observe that
DEBUG wants a new start address. Enter the same start address 141 (RETURN)
as before.

To change the display mode press C and then M. Press S to obtain the
scrolling display mode. Exit the Command Mode by pressing X. Use the
SPACE BAR and then the REPT key to scroll the display until the display is
filled. As many as 28 instructions along with register contents can be viewed
simultaneously.

This example should have given ycu the opportunity to gain familiarity with
some of the power that DEBUG can give you in analyzing your machine langu-
age programs. Be sure to read the section on entering hex data.

RELOCATING DEBUG

m You may wish to relocate DEBUG either because its current location in
OPm

emory (1000-1EAF) conflicts with your machine language program or be-
cause you wish to have it adjacent to your machine language program so that
you can easily load/save both DEBUG and your program simultaneously. To re-
locate DEBUG simply answer the question ‘DO YOU WISH TO MOVE
DEBUG? (Y/N)’ with a Y. You are then asked for the RELOCATION
ADDRESS. Enter the address at which you wish DEBUG to begin and press the
RETURN key. DEBUG occupies OEAF bytes of memory and will be moved to
the new address that you entered. All instructions such as CALL and JP that
depend on DEBUG’s memory location will be automatically modified. If there
is insufficient RAM to relocate DEBUG at the address you requested, you will
receive a very brief message ‘OUT OF RAM’ and you will be asked for the object
program START ADDRESS. If the move is successful, control will go back to
the Sorcerer Monitor. Remember that if you save the relocated DEBUG on
cassette, you must SET X=(new start address of DEBUG) prior to saving if you
want to use LOG to load the program.

GETTING STARTED

If you have used the Sorcerer Monitor command LOG to load DEBUG, you
will see the copyright message and the question ‘DO YOU WISH TO MOVE
DEBUG (Y/N)?’. You may also arrive at this point by entering GO 1000
(unless DEBUG has been relocated) from the monitor after loading DEBUG. If
you answer this question with an N, you will be asked to enter the START
ADDRESS. Enter the hexadecimal address at which you wish single step pro-
cessing to begin. If you make an error in entering the hex address, see the section
on entering hex data to correct the error. After the start address is entered, the
registers and some memory are displayed and single step processing begins.

DISPLAY OF REGISTERS

With the full display of registers you will be able to see the contents of all
of the principal Z80 registers along with 16 bytes of memory at the locations to
which the BC,DE,HL,IX,1Y,SP, and PC registers point. At the top are seen the A
register and the flags. The symbols and bit locations for the flags are given below.

el

FLAG BIT LOCATION

Sign Flag

Zero Flag

Half-Carry Flag
Parity/Overflow Flag
Add/Subtract Flag
Carry Flag

er a flag bit is set (that is, is on), the symbol designating the flag bit
3 otherwme the space for the symbol will be blank

OZTINZ
oO=NAON

reglster pair. To the right of the contents of the BC register an arrow

4 wed by 16 bytes of data. These data are the 16 bytes of memory

e memory location that is contained in the BC register pair. The

s to the other registers. The last 16 bit register, PC, is the Program

he bytes to the right of the arrow on the PC row represent the current

-c{.n (not yet executed) and the instructions following this one m’
v the row containing the Program Counter data are two rows of
%‘ta'that always appear during single step processing. These data repre-
CO tents of registers. For a diagram defining the register contents dis-
ese two rows, see the Map of Register Contents at the bottom of the
his booklet.

E STEP PROCESSING

node you can execute your machine language program one instruc-
‘i‘p This is done by pressing the SPACE BAR or RETURN key. In
| can execute CALL instructions in a single step by pressing S.
t 1e CALL instruction is in ROM, this will not work. This key can
for executing instructions other than CALL.

display modes, view memory, load registers or memory, set
restart single step processing, you need to enter the Command
s done by pressing C. Finally, if you have previously set breakpoints,

»

*
"i

-

4

v,

¢

of these is entered, see the Command Summary on the last page. Note that when
you wish to view memory or load memory, you must enter the hex address first
followed by the command (V,P, or L) with no spaces. Thus, entering

107CL

results in entering the Load subcommand mode with entries beginning at the
address 107C.

BREAKPOINT SUBCOMMAND MODE

This mode is entered by typing K while in the Command Mode. Enter up to
five hex addresses separated by a single space or comma. Note that two succes-
sive spaces will result in locating one breakpoint at 0000. Upon hitting the
RETURN key, the object program will be executed starting at the current
address until one of the breakpoints is encountered. When a breakpoint is en-
countered, control will be passed to the single step processing mode.
~ Caution should be exercised in entering breakpoints because the object pro-

am may blow up before a breakpoint is encountered. The method that DEBUG

uses in establishing breakpoints is to insert three byte jump instructions at the
specified breakpoints. These jump instructions cause control to be returned to
DEBUG. When control is returned to DEBUG in this way, the jump instructions
are replaced by the code originally in the object program. If one or more break-
points are inserted and none is encountered, and your program does not blow
up, then hitting RESET and restarting DEBUG will not remove these jump in-
structions and the object program will be polluted. This condition can sometimes
be detected during single step processing by a sudden shift in instruction address-
es from the object program to the DEBUG program. One should be aware that
breakpoints cannot be entered into ROM. Execution of the object program be-
fore the breakpoints are encountered will be just as fast as though DEBUG were
not in service.

The last set of breakpoints that were entered are stored by DEBUG and are
available to be used again by means of the W command (see below). The break-
points are ‘Igt_‘when a new start address is entered.

W COMMAND (REPEAT PREVIOUS BREAKPOINTS)

If you have already established one or more breakpoints, then pressing W
while in either the single step processing mode or the Command Mode causes the

|Qevious breakpoint(s) to be automatically re-entered and the object program to

executed from the current address until one of the breakpoints is encoun-
tered. The effect of the W command is the same as re-entering the previous
breakpoint(s) and pressing RETURN. The same caution should be exercised
with the W command as is exercised with breakpoints. The purpose of the W
command is to free the programmer of the task of repeatedly inserting the same
breakpoints. This can be especially useful in debugging routines which contain
loops.

VIEW MEMORY SUBCOMMAND MODE

This mode is entered by inputting hhhhV while in the Command Mode
which will result in displaying 48 bytes of memory starting at the hex address
hhhh. Once in the subcommand mode, pressing ; displays the next 48 bytes and
pressing — displays the previous 48 bytes. Pressing any other key returns control
to the Command Mode.

—Ga

N

PAGE MEMORY SUBCOMMAND MODE

This mode is entered by inputting hhhhP while in the Command Mode. This
mode is similar to the View Subcommand Mode with the exception that ; in-
creases the memory addresses displayed by 256 bytes and — decreases them by
256 bytes.

REGISTER MODIFICATION SUBCOMMAND MODE

This mode is entered by pressing R while in the Command Mode. To modify
the contents of a register, type
*r=hh(RETURN)
where r is a register and hh is a one byte hex number. The acceptable values for r
are A,F,B,C,D,E,H,LIXIX+1,1Y,lY+1,SPSP+1, A'F' B'C'D.E'H’, and L'.
Note that entering | X=hh modifies the lower order byte of the two byte address

contained in the index register X and that entering IX+1=hh affects the highf“

order byte. The same rule applies to |'Y and the stack pointer SP. To modify thl
program counter PC, simply return to the START ADDRESS prompt bv hitting
G while in the Command Mode, then type in the new PC address. To exit the
Register Modification Mode, type X. This applies at any point other than when |
has been entered. If X is entered after |, DEBUG interprets this to niean that
you wish to modify the contents of the |X register.

LOAD MEMORY SUBCOMMAND MODE

- This mode is entered by inputting hhhhL while in the Command Mode. Once
in this mode entering a series of two hexadecimal digit bytes separated by single
spaces will cause those bytes to be loaded into memory starting at the address

“hhhh. If you make an error with an entry, remember that DEBUG accepts the

last two hex entries in a series as the input. Thus, if one enters
\ 6B 7C7D 12(RETURN)
the bytes 6B,7D,12 will be loaded into memory at the address hhhh specified in

_the hhhhL command. If you do not enter any hex digits but press RETURN, the

byte 00 will be loaded at the specified address. It is strongly recommended that
you follow a Load with View to see that memory has been modified as you
intended.

DISPLAY SUBCOMMAND MODE

i3 This mode is entered by pressing M while in the Command Mode. Pressing
any of the keys F,S, or L while in the Display Subcommand Mode causes a re-
tu}nto the Command Mode and establishes the single step processing display
mode. These modes are

F: The full dispiay as seen on the front page of this booklet. This is the
, default mode and is set at each restart of DEBUG.

S: The display scrolls as instructions are executed, displaying a history
- of the contents of the non-prime registers.

< L: Single step processing modified only the bottom two rows of register
~ data. This low mode is designed for debugging machine language
programs that cause graphics to be displayed. It is also the fastest of

the three display modes.

p 7242

»

/e

o~

INPUTS TO OBJECT PROGRAM

If your object program has a CALL to E009, the location of the monitor in-
put subroutine, DEBUG will detect this CALL and request an input. Upon re-
ceiving any input, DEBUG will load the value in the A register and continue with
the next instruction.

BREAKPOINT(S) SUBCOMMAND SUMMARY

SUBCOMMAND EXAMPLE WHAT IT DOES
ADR1,ADR2, ..., ADRS5 *1B36,1CDF Sets breakpoint address(es)
RETURN RETURN Executes program from current
address until one of specified
breakpoints is encountered
X *1B36X Returns to Command Mode with

no breakpoints set

VIEW MEMORY SUBCOMMAND SUMMARY

SUBCOMMAND EXAMPLE WHAT IT DOES
b g Displays next 48 bytes of memory
— — Displays previous 48 bytes of memory
Any other key X Returns to Command Mode

PAGE MEMORY SUBCOMMAND SUMMARY

SUBCOMMAND EXAMPLE WHAT IT DOES
Displays next 256 bytes of memory
— — Displays previous 256 bytes of memory
Any other key X Returns to Command Mode

REGISTER MODIFICATION SUBCOMMAND SUMMARY

SUBCOMMAND EXAMPLE WHAT IT DOES
r=hh *L'=78 Loads register r with the value hh
X *A=X Returns to Command Mode

LOAD MEMORY SUBCOMMAND SUMMARY

SUBCOMMAND EXAMPLE WHAT IT DOES
hhb[hhb[hhb. . .11 07 11 Enters data into memory at the pre-
viously specified location
RETURN RETURN Returns to Command Mode after
entering data
DISPLAY SUBCOMMAND SUMMARY
SUBCOMMAND EXAMPLE WHAT IT DOES
ks 21 Sets display mode to full and returns
to Command Mode
S *S Sets display mode to scrolling and
returns to Command Mode
L *L Sets display mode to low and

returns to Command Mode

SINGLE STEP PROCESSING KEY PRESS SUMMARY

KEY PRESS EXAMPLE WHAT IT DOES
SPACE BAR or SPACE BAR or Executes current instruction
RETURN key RETURN key
S S Executes current instruction; if
instruction is a CALL, executes
entire subroutine in one step
C G Enters Command Mode
=
W w Executes program from current
address until one of previously
set breakpoints is encountered
DEBUG COMMAND SUMMARY
COMMAND EXAMPLE WHAT IT DOES
X >X Exits Command Mode and re-
turns to single step processing
K > K Enters Breakpoint Subcommand
Mode
w >W Executes program from current
address until one of previously
set breakpoints is encountered
hhhhV >1B6CV Displays 48 bytes of memory
beginning at specified address
and enters View Subcommand
Mode
hhhhP >1000P Displays a Page of memory be-
ginning at specified address and
enters Page Subcommand Mode
R >R Enters Register Modification
Subcommand Mode
hhhhL >1FO8L Enters Load Memory
Subcommand Mode
M >M Enters Display Subcommand
Mode
G >G

»

message. Requests entry of new {
single step processing address

Returns to ‘'START ADDRESS’ ,

counter

1044 DD 2C
FF

}
A’

MAP OF REGISTER CONTENTS

R 1-— first byte of current instruction

s Bf

ZH N 5A43

M HP C FFFF
T

‘ﬂags B’C’

DE HL lz(13(
3A3B 3aY 1 UBG2A 7F91
FFO8 FFFF 7F8F

4 4)
D’E’ H’L’ SP

QUALITY SOFTWARE

6660 Reseda Blvd., Suite 105, Reseda, Ca. 91335
(213) 344-6599

