5

---------------d------
L

PASCAL-80

Phelps Gates

m
NEW {CLASSICS SOFTWARE

239 FOX HILL ROAD-DENVILLE NEW JERSEY 07834 TELEPHONE 201-625-8838
—— TR .

Table of Contents

Registrationo.ooii i page 4
Table of Contents.................ooiviniin page S
Short description of Pascal 80.............................. page 6

— _ Beginner’s Section
Getting Started page 7

Writing a Sample Program................................. page 9
Introduction to the Editor............. e page 11
Saving and Loading Programs.............................. page 14
Limitations of Pascal 80................ e page 16
Extensions to Pascal 80cooeiiiiiiiininn. page 16
EDITOR functions e page 19
MONITOR functionsccovviiiiinineeeennnnnn... page 20
COMPILER Optionsoovvviiiiiniiieninennnnnn. .. page 23
CONSTANTS . page 25
VARIABLE types ..., page 26
FUNCTIONS ... page 27
PROCEDURES ... page 34
FILES. ..., e page 38
File conversion to ASCII..............ccviiiiieniinnnn, page 40
Graphics s page 41
Creating CMDfiles...............oiiiiiiin . page 42
Demonstration Programs........oovvveeeerresreseeannnnnnn.. page 43
Compiler ERROR messagescocvveenn. .. page 44
Run-time ERROR messagesccovvvvevvnnnnn. page 45
Revision History........oooiiiiiiiiiniiiiiiiiiaieaanannnn, page 47
Using Pascal 80 to Teach Programming page 48
Reviews of Pascal Bookscooevviveiinen., page 50
Chaining files with Pascal 80........................... page 53
Index ... e e e page 61

LessThan 28 PREVious page (edity 19 '

. Licensing Pascal 80 2,42 PRIME/SRC....... ... 43
Abs ... 27 Div........ e 27 Limitations of Pascal 80........... 16 Print program ... 1" 19
Add ... 27 Divide...................0..0000" 27 LINEerase 11,19 Print formatting ..., /" 34
Additions - Procedures......... ... 17 DOleops.................007""" 13 LINEinsert................... 11, 19 Proc................. 17
And ... 28 DOSreturn...... 21 List program.................... .. 19 Procedures —~TT 34
Append source program...... 22 DOSPlus .../ 7 ; Ln(X) .o 29 Program.............. .00 7
Arithmetic Operators 27 DUPLICATEerror.......... . 44 j Loading Object files.......... 15 PReset....................00" 17, 41
ArcCos e, 30 Editor Commands 19, 21 : Loading Source files 14, 21 pSet........... e 17, 41
ArcSin ... 30 Editing (Introduction).... 12 Local Variable limitations 7,16 Put.. T 16
ArcTan.....................00" 30 Editor functions17 18 ! Logarithm functions 29 Printer output ..., .. 11,15, 19, 21, 23
Armayof File.......°0" 16 Editor sub-menu.... " 18 Logic Operators 28 Print formatting~ 17, 34
ASCII file conversion 40 Else ... 17, 37 f Lower Case Driver................. 8 Quit (editor) /70 " 19
Assignment operator 13, 28 End ... 9 ' LP 17 Quit(to DOS)1""" 21
Author package...... 7 42 Eof (files)........... ...~ 39, 40 Machine language............ . 31, 36 Random functions ..., . .. 0~1"" 4]
BAD OPTIONerror......... 44 Eof........ CEE R 36 Mailing List Instructions 43 Read~ 35
BAD RANGE error (compile) 44 Eoln(files)................00"" 39,40 ‘ MAILIST/SRC0" 43 Read(files)00 39
BAD RANGE error (run time) 46 Eoln............. ...~ 36 MaxInt....................... 17, 25 Read non-text files........ " 39
BAD TYPEertor............... . 44 Equal......................0.0" 28 Memoooooiii 31 Readin.......°" 35,39
Begin.......................0 9 Eraseline.............. .07 19 | Memory compiler option.......... 23 Readln (files)°0 7" 39
Block move (edit) 19 Exp(X) ... 29 i Memorymap...................... 8 REAL OVERFLOW error
Book Reviews07 50 EXponcnt(variablc) 37 Minlnt 17, 25 (compiler) 44
Boolean variables 7 26 Exponentiation 0" 29 MISMATCH error REAL OVERFLOW error
BREAK0" 36, 45 Extensions to Pascal 16 ; (compile time) 45 (run-time) 46
Brackets....................00 7" 16 False e, 25 ’ MISMATCH error (run time) 46 Real variables....... """ 26
Bugs....................... 7 File conversion utility 40 Mod..........oo.. 27 Real6 variables 26
Gall ... 31 File declarations ,....... ... """ 38 : ModelI 7 Recommended Texts..... .. .| 6, 50
Cancel (edit)........... 18, 19 File handling funetions 31, 38 | Model IIl.......................... 7 Record oriented files ..., ... 39
Caseandelse 17, 37 File packing 7" 40 ' Monitor commands 21 Registration0.7"""" 4 .
Character Arrays " 3s File Specifications Ceererneaa. 20, 38] Multiply 27 Required parts of a program 9 .
CHARacter variables 26 File window variables 16 | New. ..o 16 REDO0....." 46
Chr.........ooo 32 Filenames (TRSDOS)....... ... 20 : NewDOS......... i, 7 Reset (textfiles)....... . .. " 39
Clear Editor°""" 2] Files.....................0] 12,17, 38 . Next page (edit),.................. 19 Reset (record files)y " 40
Close...................... 36, 39, 40 Format (autotab) 19 : NoList............. Perereiiaan., 24 Reset (graphics)...............°" 4]
Cls .o T 34 Formatting print......... .. /" 34 Not......ooooooiiiiii i, 28 Revisions~ 4,8, 47
CMD file creation """ 42 Fp(variable) ..., ... 37 NotEqual 28 Rewrite (text files) 39
Code000 23 Functions 27 Func 17 Oddooooiiiii 32 Rewrite (record files). 40
COINTOSS/SRC17 43 Get.....oooTT 16 Open (insert character) 19 Rnd, RndR e, 4]
Comparison Operators .,..... .. 27,33 Getting Started ..,....... ... """ 7 Operators......................... 27 Round................... .00~ 32
Compilation errors...... .. * 4 GOTOXY~ 17, 43 Ore 28 Run (program)...............0 """ 21
Compile and Run.......... """ 10 Graphics....................00 " 4] Ord ... 32 Run Time error messages.......... 46
Compiler options23 Greater Than " 28 Ordinal functions 32 Save source program
CONSTants/ 25 Hardcopy.............. .07 23 OUT OF MEMory error 45 Save object program
CONTROL key...... 55,6, 10, 12, 18 Halting printout07 34 Output 17 Seek....................00"
Contemts.......... 7707 "' 5 Identifier limitations 16 Pack ... 16 Seek (record files)..............
Conversion functions.... ... 32 ILLEGAL JU MPerror......... .. 46 Page............. 16 Semicolon 9
CONVERT..................0"" 7 Ino.o ‘33 Peek............. 31 Serial Printers
Cos..........o 29 Include 24 : Pl 25 Set(Graphics) "
CREATE/SRC.............0"""" 43 Inkey ... 31 i Point (graphics)................... 41 Set limitations
Cursor choices ..., .~ """ 8 Input.....................0000" 17 i Pointers 16 Set operations
Delete (back arow) ... 18 INTeger OVERFLOW error 46 Poke 36, 41 Sinooo
Delete character ... /""" 19 Integer variables - " 26 Powers 29 Sqro.... 27
Demonstration programs..... 43 Intersection....... 33 Pred........................ 32 SqRt..............
Dispose...........0...T 16 Kill (text in editor) 20
Difference """ 27,33 LDOS........ .0 7 , 62

i
61 ;
U G

What is Pascal 80? -

There are many versions of Pascal available, including Standard
Pascal, UCSD Pascal, and Tiny Pascal. Pascal 80 is a TRS-80
(Models I and 111 only) implementation of Standard Pascal, with
some restrictions and some extensions. The most important differences
are the lack of pointer variables and variant records.

Efficient and compact code allows Pascal 80 to have a monitor,
editor, and compiler in memory in the computer at the same time, yet
leave enough room to create programs up to 23K bytes, with an
additional 9K available while the program is running for variables
and work space. This allows programs to be written, compiled,
edited, and compiled again without time consuming disk access. This
gives Pascal 80 a friendly character similar to interpreted languages
such as Basic and APL, while retaining the speed of a compiled
language and the unique flavor and advantages of Pascal.

Pascal 80 is ideal for modest programs, but is not intended as a
development language for applications requiring memory overlays or
managing very large disk files.

About this manual

This manual tells you how to use the Pascal-80 text editor, monitor,
and compiler, and explains, with examples, the features of the language.
While examples are given, those who have no previous experience
with Pascal will probably want to review a text on Standard
Pascal. Recommended texts include:

Programming in Pascal by Peter Grogono (Addison Wesley)

Oh! Pascal! by Doug Cooper and Michael Clancy (Norton)

Pascal User Manual and Report by Kathleen Jensen and Nicholas
Wirth, (Springer Verlag)

Pascal by W. Findlay and D. A. Watt (Computer Science Press)

Texts which describe UCSD Pascal will be less useful. UCSD
Pascal includes a number of extensions and changes to Standard
Pascal. (Actually, there are many variations of even Standard Pascal.)
These extensions especially involve the handling of files, character
strings, and graphics. While Standard Pascal is thus a more limited
language, itis an excellent introduction to computer programming in
a structured language, and Pascal 80 is especially well suited to
applications of moderate size.

In this manual, when you are referred'to a CONTROL function,
press the SHIFT and ¥ keys at the same time as the letter in the
control function. Therefore, to get a CONTROL Q press the SHIFT
and ¥ and Q keys at the same time.

Getting Started with Pascal 80

Pascal 80 is supplied on a single density diskette with the TDOS
operating system from Micro-Systems Software. The program
automatically adjusts itself for TRS-DOS 1.3 on the Model III or
TRS-DOS 2.3 on the Model I, or will operate under TDOS on the
Model I or DOS Plus 3.4 in the single density, double density or
Model III versions.

To use Pascal on the Model III , you must have two disk drives.
With TRS-DOS 1.3, use the CON VERT utility. Boot your TRS-DOS
disk in drive 0, place the Pascal 80 disk in drive I, and type (from
DOS); CONVERT . After the file is converted, type PASCAL to
enter the monitor. If you have DOS Plus on the Model 111, boot DOS
PLUS in drive 0, place your Pascal 80 disk in drive | and type
CONVERT :1 , and your Pascal 80 disk can be read directly on the
Model II1. Use COPY to transfer files to DOS Plus I1I.

To use Pascal 80 on the Model I, simply boot the disk in drive 0
and type PASCAL. TDOS has a built in lower case adapter that can be
activated by pressing SHIFT 0 . This allows you to use lower case.

To copy PASCAL 80 to another Model I DOS, you must copy
each file separately. Use the DIR or CAT commands to find the
names of all the files included. Then use either COPY filename:0:1 if
you have two drives or COPY1 filename if you have only one drive.
Then follow the instructions on the screen.

The current version has been tested with and will work with TRS-
DOS, DOS Plus, NewDOS 80 (including version 2), NewDOS,
LDOS, and DoubleDOS. Since Pascal 80 has its own keyboard
driver, some special features, including the screen print routines of
certain systems, will not work under pascal.

To make a-copy of your Pascal 80 disk on the Model I, type
BACKUP, answer the questions and follow the instructions on the
screen.

Known BUGs in Pascal 80

1) Array index variables in records must be global variables. Local
variables do not work.

2) When you declare a variable in a record declaration, you may not
reuse the same variable name elsewhere.

3) Inafew places, spaces are significant where the standard specifies
otherwise. For example, no space is allowed inside the assignment
operator or keywords.

4) Please document any errors you find and send full information to
us.

5) If anyone implements pointer variables, we would dearly love to
have a copy of the new code. We are also willing to provide some
assistance to those who make the attempt.

Memory MAP

START= 5300H,END= A4E0,TRA= 8409The transfer address
configures for model I or III and jumps to the normal entry point at
7000H. The program text begins at A400, the stack takes 256 bytes at
the top of memory and the symbol table works down from the stack.

The program is organized as follows:

5300 PCODE interpreter
EDITOR
COMPILER
PROGRAM text
SYMBOL table
STACK
(optional) INIT routines
When eXecuting a program using the X option, the pcode begins at
8000H.

Cursor Choices
Pascal 80 is supplied with a flashing underline cursor. To change
this to a flashing block change memory location AOD9 (File sector
4F Byte 15) from 00 00 to 18 18. To change to a solid block change
memory location AOC1 (File sector 4 E Byte FDy from C3 D0 A0 to C3
00 70.

Lower Case

Pascal 80 honors the normal Model 111 lower case routines. There
is also a built in lower case driver for the Model I in TDOS, the disk
operating system on which Pascal 80is supplied. In either case, press
SHIFT 0 to toggle between lower and upper case. Lower case letters
in variable names and keywords are treated as upper case. Pascal 80
cannot distinguish between begin, BEGIN, Begin, and bEgIN. (This
conforms to the Pascal standard.)

Upgrade policy
We are continually improving Pascal 80, and will be happy to
provide upgrades to earlier versions at the following prices:
Upgrade Ramware Pascal 80 to New Classics Pascal 80.
Send $35 (check or money order only) and your instruction booklet.
Upgrade New Classics Pascal 80 to latest version.
Send $6 (check or money order only) and your serial number. You
must have returned a registration card.

Writing a program
Once you have made a backup copy of your diskette to work with,
and have put the original in a safe place, you will want to write your
first program.
From DOS READY, type PASCAL and press ENTER. This will
put you in the monitor mode and the screen should read as follows:

PASCAL-80
- EDITOR
- QUIT(TO DOS)
- KILL (CLEAR EDITOR)
- COMPILE PROGRAM IN EDITOR
- RUN PROGRAM IN EDITOR (COMPILE IF NECESSARY)
- SAVE PROGRAM IN EDITOR
- LOAD PROGRAM IN EDITOR
- APPEND TEXT TO EDITOR
- WRITE OBJECT CODE TO DISK (COMPILE IF NECESSARY)
- EXECUTE PROGRAM FROM DISK

xXgrmumAXOM

Press the E key to enter the Text Editor.
Every Pascal 80 program must have the following parts:
IY The keyword PROGRAM
(this is usually followed by a NAME)
2) and a ; (semicolon).
3) The keyword BEGIN
4) followed at some time by the keyword END
5) and a . (period).

Now type in this program:

Program Print (QUTPUT);
Begin

Writeln (‘Hello, YOUR NAME’)
End.

When you finish typing each line of a program, press the ENTER
key. This tells the computer that the line is complete.

Substitute your own name for “YOUR NAME.” Don't forget to
press ENTER on the last line, or the editor will not remember vour

END. statement. If you made a mistake, just use the

arrows on the keyboard to move the cursor (the flashing underscore)
to the place where your mistake was and retype the line from that
point.

) |

Now we arc ready to compile the program. First, press the BREAK
key. This will put a menu at the bottom of the screen:

< QUITTOP NEXT PREVIOUS OPEN DELETE CANCEL LINE ERASE FORMAT>

Next press CONTROL Q. (SHIFT ¥ Q all at the same time.) This '
will return you to the monitor menu:

PASCAL-80
- EDITOR
- QUIT (TO DOS)
K - KILL (CLEAR EDITOR)
C - COMPILE PROGRAM IN EDITOR
R - RUN PROGRAM IN EDITOR (COMPILE IF NECESSARY)
S
L
A

om

- SAVE PROGRAM IN EDITOR

- LOAD PROGRAM IN EDITOR

- APPEND TEXT TO EDITOR
W - WRITE OBJECT CODE TO DISK (COMPILE IF NECESSARY)
X - EXECUTE PROGRAM FROM DISK

You now have three different ways to compile your program. If
you press C , the program will just compile. If you press R , the
program will compile and execute. If you press W, the program will
compile and the screen will display: '

ENTER FILESPEC - < BREAK > TO ABORT 3

If you now type in a valid filename, your program will be saved to
disk.

This time, type R. The screen will display a sequence of messages *
similar to this:

00:31:32 COMPILATION STARTING

00:31:32 COMPILATION COMPLETE |
00:31:32 RUNNING

Hello World

00:31:32 EXECUTION COMPLETE
PRESS< ENTER>TO GO ON

If you made a mistake in your program, the compilation will stop
when the mistake is encountered, and the screen will display the line
in which the mistake is suspected, with an arrow pointing to the
possible location of the mistake, and an error message. The error
might actually be in the previous line or in the command prior to the
arrow. If you PRESS< ENTER> TO GO ON , you will return to the -
monitor editor. Pressing E will return you to the editor, with the line
in which the error occurred being displayed. For this program, just
retype the line with the error, press ENTER, and try again to compile
it. Later on, you will want to refer to the sections on compiler error
messages and editor commands.

10

Elements FILES and WRITELN

(OUTPUT) is a file declaration. It tells the Pascal compiler to
reserve a file to output information to the screen. Actually, Pascal 80
does not require you to declare QUTPUT as a file. It has three built-in
files that are always available, INPUT, OUTPUT and LP. INPUT
declares that information will be coming to the program from the
computer keyboard, OUTPUT declares that information will be sent
tothescreen, and LP declares that information will be sent to the line
printer. Even though it is not necessary to declare these files in Pascal
80, itis a good habit to get into, as it is required in some other versions
of Pascal, and also tells other persons looking at your program what
will be happening.

WRITELN, pronounced “Write Line,” writes a message to the
screen. The message must be enclosed between parentheses and single
quotes, as shown in our example. There is also a plain WRITE
function, which in our demonstration program would make a difference
that you might not even notice. The difference is that there is an extra
line of space on the screen between the HELLO message and the
message

00:35:30 EXECUTION COMPLETE.

WRITELN and WRITE both write messages to the screen. But
WRITE will allow you to write your next message right beside your
current message, while WRITELN will start the next message on the
next lines.

Introduction to Editing

Let us modify our program. Go back into the editor. (Remember,
press E from the monitor menu.) To see your program, you may have
totype CONTROL T. (There is no CONTROL key on the TRS-80,
but holding down the SHIFT and ¥ keys at the same time and
pressing another key generates control characters, Thus, to get
CONTROL T, hold down the SHIFT and ¥ keys and press the T
key.) CONTROL T moves the cursor to the beginning of the program
in the text editor. Our program currently reads:

Program Print (QUTPUT);
Begin

Writeln (‘Hello, NAME’)
End.

We are going to make it read:

Program Print (OUTPUT);
Var count : integer;

Begin
For count : = 1 to 50 do
writeln (* Hello, NAME')
end.

11

LINE INSERT function
First, use the arrows to position the cursor on the B in BEGIN.
Now press CONTROL L. This will insert a line of space in the
program. Press CONTROL L again to insert another line of Space.
Now type in:

Var count : integer;

and press ENTER. This will add the new line to your program. (We
don’t need all the extra spaces in the program. They just make it easier
to read.)

Now use the arrows to move the cursor on top of the W in
WRITELN. Press CONTROL L again to insert a line here. Then type
mn:

For count : = 1 to 50 do

and press ENTER. Now press CONTROL Q, then R to compile and
run your program. Unless you made a mistake, the computer should
have printed your message 50 times.

Ifyou had an error, try to figure out what is different between your
program and the example program, particularly on the line in which
the arrow is displayed on the screen or the previous line. Then press
ENTER, then E to return to the editor to correct the error. Now press
CONTROL Q and R again to compile your program,

The LINE ERASE function
We are going to make another change to our program by changing:

Writeln (‘Hello, NAME')
to:

Write (count,’ Hello NAME')

Move the cursor over top of the W in WRITELN. Press CONTROL
E. This gets rid of our old line. Now press CONTROL L to insert a
new line and type:

Write (count,” Hello NAME)

It would have been easier to do this by simply moving the cursor to
the Lin WRITELN and retyping our line, then ending it by pressing
ENTER to put our new line in the program. However, we wanted to
demonstrate the ERASE function, so we deleted our old line and
inserted a new one.,

Now press CONTROL Q. then R to compile and run the program.
What was different about the output of the program?

12

New elements: VARiables, the assignment operatorand DO LOOPs
We have added two new elements to our program. The first is a
variable declaration:

Var count : integer

VAR is a Pascal keyword that tells us the information following wiil
identify variables to be used in the program. We then declared a
variable which we arbitrarily named COUNT, and told Pascal that
COUNT would be an INTEGER variable. In Pascal 80, an INTEGER
variable is a whole number between -32,768 and 32,767. Notice the
colon () between COUNT and INTEGER. It must be there.

The other new element is a DO LOOP:
For count : = 1 10 50 do

The do loop tells the program to assign to the variable COUNT
values from | to 50, counting by ones, and each time to execute the
portion of the program immediately following the do loop. The : =

inthedoloopis the Pascal Assignment Operator. It tells the computer
to assign a value to a variable. In this case it is assigning the values I,
2,3,...49, 50 to the variable COUNT. You could also use it in this

COUNT : = 995

to assign a value of 995 to the variable COUNT.

If you have not encountered an error vet, go back to the editor and
misspell one of the keywords (PROGRAM, BEGIN, WRITELN. or
END). For example, you could position the cursor over the D in
END and type a space, to make the last line read EN . Now try to
compile the program so youcanseeanerror message. Don't forget to
go back to the editor later and fix the error, as we will still be using the
program.

13

Saving and Loading Programs

Let's save our program to demonstrate the disk functions of the
monitor. We have two ways to save it; either as a source (text) file or
as an object (compiled) file.

Return to the monitor menu. If you just ran your program, you
should be able to return to the monitor by pressing ENTER. If you
are in the editor, you will have to press CONTROL Qto return to the
monitor.

Saving a Source File

First we will save our source program, the text that is in the editor.
From the monitor menu, press S. The screen will display the message:

ENTER FILESPEC -< BREAK> TO ABORT
?

Typeinafile name. A file name is any 8 or fewer letters and numbers,
beginning with a letter. It may also have an extension, which is a slash
(/) followed by one to three letters. It is suggested that you use /SRC
or /SOU as an extension for source files and /PAS or /OBJ for
compiled Pascal object files, but you may use any extension you wish
or none at all. We might type:

HELLO/SRC

and press ENTER. The monitor will now save our source file to
diskette,

Loading Source Files
Let’s load our file back in. Go into the editor (E from the monitor)
to make sure that nothing is there. Type CONTROL Qto return to
the monitor. Let’s load our source file. Type L and the screen will
display:

ENTER FILESPEC -<< BREAK> TO ABORT
?

Type in HELLO/SRC or whatever you called your file and press
ENTER. The program should load. Check it out by going into the
editor and looking. You should have your program back. (By now
you should be able to do this by yourself. If not, look back through
earlier examples.)

Saving Object Files
Saving a compiled program to disk is very much like saving a
source program. From the monitor menu, select option W. You will
again be asked:

ENTER FILESPEC -<< BREAK> TO ABORT
?

This time, you may wish to use the same filename with a different
extension. The computer will treat them as totally different files.
Type:

HELLO/PAS

or your own file name and press ENTER. Your Object code will be
saved to disk.
Loading Object Files
To load and run an object program from disk storage, select option
X on the monitor menu. You will again be asked:

ENTER FILESPEC -< BREAK> TO ABORT
?

Type:
HELLO/PAS

or your own file name and press ENTER. Your Object code will be
loaded into memory and run.

Although loading an object file from disk is performed almost
exactly the same as loading a source file, the program functions very
differently. The program is automatically executed upon loading,
and once the run is over, control is returned to DOS, not to.the
monitor. Another major difference is that the programis loaded right
on top of the compiler portion of Pascal 80. This allows the program
9K more workspace for run time variables than can be obtained with
the compiler in memory.

Serial Printer Drivers

Pascal 80 will honor HIMEM at $4049 on the Model I and $4411
on the Model III if you want to add your own printer driver.

15

Limitations of Pascal 80

Not all of the functions of standard Pascal are implemented in
Pascal 80.

The following FUNCTIONS are NOT IMPLEMENTED:
Variant Records

WITH statement

Pointer VariablesNEW, DISPOSE statements

File Window (Buffer) Variables GET and PUT procedures
Procedures PACK and UNPACK (Al structures are packed on
byte boundaries.)

Procedure PAGE, But try WRITE(LP,CHR(12))

Structures of files (ARRAY OF FILE, etc.)

OTHER LIMITATIONS:

Sets are limited to 256 members, and if they are numeric, must be in
the range 0..255.

The identifier of a procedure or function may not be passed as a
parameter to another procedure or function.

No expression passed as a value parameter may exceed 510 bytes
unless it is a VAR parameter.

Integer variables used to reference array entries in a record must be
global variables. Local variables will not work in this instance.

[must be indicated as (. and] as .) on the Model 1. The Model 111 has
bracket characters. To obtain the brackets on the Model 111, use
SHIFT 4 for [and SHIFT@®for] . While the Model III has curly
brackets , Pascal 80 uses (* and *) for comments.

Spaces are significant in a few isolated instances where they would
not be in standard Pascal. Thus, the assignment operator must be: =
and not: = (no space allowed).

Integer variables are limited to the range -32768 to 32767.

Extensions to Standard Pascal

Arrays of characters may be printed with a single statement. For
example, if STRING is declared a5 an ARRAY(.1..10.) OF CHAR
then WRITE(STRING) is equivalent to:

FORI:=1T0100D0 WRITE(STRING.1.))

READ and WRITE may be used with non-text files in place of
GET and PUT.

When using string constants in assignment statements and
comparisons of character arrays, the constant on the right may be
shorter than the item on the left and will be automatically padded
with blank spaces as necessary. If: .

VAR STRING : = ARRAY (.1..10.) OF CHAR

then STRINQ : = ‘NAME' is valid and STRING »‘NA’ would be
TRUE. (The right hand argument must have at least 2 characters.)

16
-~

PROC and FUNC are accepted as valid abbreviations for
PROCEDURE and FUNCTION.

Predefined constants are MININT (-32768), PI, FALSE, TRUE,
and MAXINT (32767)

REAL variables have 14 digit precision, but REAL6 (six digit
precision) is provided as an optional type to save spacein large arrays
(4 bytes instead of 8). No time is saved, as calculations are still
performed with 14 digit precision. REALG variables that are not
members of an array or record may not be passed to a procedure or
function as value parameters.

Standard files INPUT and OUTPUT need not be declared in the
PROGRAM statement, and the program name is also optional.
Pascal also provides another predefined file, LP, for the line printer.
Additional Procedures

The following procedures are added to standard Pascal. These are
explained later under the heading “Procedures.”

CLS clears the screen. CLOSE will close files. SEEK
(expression.filename) will position a named file to a record within a
file. INKEY returns the value of any key pressed. CALL(address,value)
places a value into the A register and calls the address. It returns the
contents of the A register after the call. MEM returns the number of
bytes of free memory. PEEK(address) obtains the contents of a
memory address. POK E(address,value) places a value into a memory
location. FP(expression) returns the fractional partofa REAL number,
EX(expressionjreturns the exponent of a REAL number to a variable.
The INCLUDE function, (*$ filename *) allows you to compile a
procedure from a disk source file into your program,

In addition to these built in procedures, example procedures are
supplied on the program diskette for cursor positioning;
GOTOXY(hpos.vpos) and for block graphics; PSET(hpos.vpos),
PRESET(hpos.vpos). and POINT(hpos.vpos).

The CASE statement is extended in two ways. An ELSE clause
may be included. and will be executed if no other case is satisfied. If
no caseis satisfied and there is no else clause, control will fall through
to the next statement without an error indication.,

Both REAL and INTEGER expressions are printed with the
statement:

WRITE(expression:fieldwidth:digits)

A fieldwidth of - 1 calls for scientific notation, and the digits parameter
will be ignored, if present. A field width of 0 produces the default
format, also used if no specification of format parameters is made.
The default tormat prints the number with a space before 1t and as
many digits after the decimal point as necessary,

17

EDITOR Functions in Pascal 80

Pascal 80 provides a text editor to help you prepare a series of
program statements. The text which you typeis collected intoa text
workspace in your computer’s memory, which can then be compiled
orsaved by the monitor. Since the video display is not large enough to
show the entire contents of your workspace, it functions as a movable
window, displaying 15 lines of your program at a time.

The arrow keys move the cursor about the screen, When the top of
the screen is reached, the display will scroll until the beginning of the
program is found. In a similar fashion, when the end of the screen is
reached, the display window will scroll until the end of the programis
displayed.

During the entry of a program, errors can be corrected by using the
SHIFTED left arrow key to erase characters, or by using the right or
left arrows to move across the text without erasing, then retyping the
line or portions of it to correct errors. The arrow keys, like all other
keys, have an automatic repeat function when they are held down.
Once a line is correct, save it in the text workspace by pressing the
ENTER key. The entire line will be saved, even if the cursor is not at
the end of the line.

You can edit a line that has already been entered by simply typing
over it and pressing ENTER . The new line will replace the old in the
text buffer. Itis VERY important to press ENTER, as otherwise the
changes are not saved. You can cancel the changes you have made by
moving away from the line with the arrow keys before you press
enter. While the screen will still display the changes, you can display
the actual line by pressing CONTROL C (for CANCEL).

The EDITOR Command Menu

Twelve useful commands are provided in the text editor mode.
While you are getting used to them, you may wish to have them listed
at the bottom of the screen. To do so, simply press BREAK. To erase
the menu, press CLEAR.

QUIT TOP NEXT PREV OPEN DEL CANC LINE ERA FORM BLOCK WRITE

You can use one of these commands by pressing the first letter
while holding down the SHIFT and ¥ keys. You can use the editing
commands whether or not you have this menu on the screen. Itis only
provided as a reference.

18

CONTROL:

T will position the cursor at the beginning (Top) of the work space.

N will display the Next 15 line page of text as if you had moved the
cursor to the bottom of the page and pressed the down-arrow 15
times.

P will display the Previous 15 line page of text, if any.

Q will return you to the monitor menu. (Quit)

L will insert a blank Line at the current cursor position.

E will Erase the line in which the cursor resides.

F toggles the autotab function to help you Format your Pascal
programs. The editor will remember the position to which you most
recently tabbed, and automatically indent to that position whenever
you press ENTER. Thisallows youtotypea series of lines at the same
nesting level without retabbing. Backspacing to the left of the current
tab position will set a new tab position for the following lines. The
autotab function is on at power up. The F command will turnit off or
back on again.

C will Cancel any editing you have done on the present line if you
have not yet pressed ENTER.

0 will Open a space at the current cursor position for the insertion
of additional text.

D will Delete a character at the current cursor position.

W will Write the program to the printer, starting at the beginning
of the line that contains the cursor. It will either print to the end, or
will stop if it comes to a line containing only the ©command foratext
marker. Thus you can print anything from a full program to a small
portion.

B is the Block move command, which can be used in conjunction
with the Append command from the monitor. Append adds another
file to the end of the current file. Control B will move all text from the
Block marker to the end of the file to the position indicated. First
place a text marker, the @sign, on a line by itself right before the block
to be moved. Then move the cursor to a blank line where you wish the
new text to be inserted and press Control B. The block of text will be
moved, and the marker line with the A symbol will be erased at the
same time.

To move only a portion of the text, you must make two moves, as
this command moves everything from the marker to the end of the
text. After you make your first move, simply mark the end of the new
section and use another block move to place the rest of your material
in its proper location.

19

The Pascal 80 Monitor

The first display given to you upon starting up Pascal 80is a menu
of commands, as follows:

PASCAL-80
E - EDITOR
Q - QUIT(TO DOS)
- KILL (CLEAR EDITOR)
C - COMPILE PROGRAM IN EDITOR
R - RUN PROGRAM IN EDITOR
S - SAVE PROGRAM IN EDITOR
L - LOAD PROGRAM IN EDITOR
A - APPEND TEXT TO EDITOR
w
X

x

- WRITE OBJECT CODE TO DISK
- EXECUTE PROGRAM FROM DISK

These commands constitute the Monitor, a “ master control ”
program for Pascal 80. In each case, all you have to do is press the
appropriate key to start the operation. Command K will verify that
you really mean to destroy the program in the editor by asking:
ERASE TEXT? (Y/N)

You must reply by pressing “ ¥ “ to actually erase the text. For
commands S, L, A, W, and X, the screen will display the question:
ENTER FILESPEC - <BREAK> TO ABORT

?

You must answer by typing the name of the file you want to load,
save, or add to your current program. A file name is of the form
FILENAME/EXT.PASSWORD:d where:

FILENAME is from 1 to 8 letters and numbers you choose to
identify your file. The first character must be a letter from A to Z.
Remaining characters may be either letters or numbers from 1 to 9.
No spaces, punctuation marks or other symbols are allowed.

/EXT is an optional extension that you may use to identify your
program. You may choose to omit the extension entirely. Anextension
consists of aslash (/) followed by 1 to 3 letters and numbers. The first
character after the slash must be a letter.

.PASSWORD is an optional period, followed by 1 to 8 letters and
numbers you may want to use to prevent unauthorized access to your
files. As with filenames, the password must begin with a letter, but
both letters and numbers are legal in the rest of the password. Whena
user asks the disk operating system to give a directory of the disk,
only the filename and extensions are shown, although password
protected files are indicated by a “ P * after the file name. The user
must know the password to gain access to the file. Do not place much
confidence in passwords. There are many ways to defeat them, and
they generally only stop computer novices from reading the file.

:d is the drive number of the disk drive that holds your file. For the
majority of users, that will be either :0 or -/ , though more than two
drives may be present. Some hard disk systems for the TRS-80 may
appear to the system as 90 or more disk drives, so 90 is possible.

20

-~

Moniter Functions

E places you in the editor mode. If there is text already in the editor,
you will be able to see it. If the computer has just stopped in the
middle of compiling a program because there is an error in your
program, when you go back to the editor you will be on the line in
which the computer discovered the error. making it easy for you to
correct the error. Note that in some cases, including times when the
previous line is missing a semicolon (;), the error will actuallybeona
previous line. A preceding section of this manual discusses the editor
commands.

Q returns you to the disk operating system. This allows you to
execute disk commands like DIR (get a directory of files on the disk),
FREE (find out how much space is left on the disk for new files) or
PRINT (print a file on the line printer). You can use Q to go to DOS and
still return to Pascal without disturbing your program. If vouwant to
restart Pascal, just type PASCAL, and any program in memory will be
cleared. If you want your program back, type PASCAL and hold down
the ENTER key until Pascal 80 loads. The programn the editor will
not be disturbed. You may then type E to see or modify vour program.

K erases the contents of the editor. Since doing this by accident
could resultin the loss of a lot of programming time, this option also
includes a chance to change your mind by asking if you want to ERASE
TEXT? (Y/N) . If you type “ Y * the program in the editor will be
cleared. Any other key pressed will return you to the monitor mode
without erasing your program.

R will run the program that is currently in the editor, known as the

source program. If the program has not yet been compiled, or you

have returned to the editor since the last time you ran the program, it
will automatically be compiled before it is run.

S will save the source program that is currently in the editor to a
disk file. You will be asked to provide a file specifier. (You may find it
useful to add the extension /SRC or ;SOU to your filename, so that
youcan later distinguish source files from other types of files.) If vou
do not want to save the current file, press BREAK instead of givinga
file name, and vou will be returned to the main menu.

L will load a source file from disk to the editor. You will be asked
for the name of the file you wish. If you do not remember the
filename, use the Q option to go to the disk operating system. and
type DIR to obtain a directory of the files on the diskette. You can then
type PASCAL and press ENTER to return to the monitor and then
load your program. If you do not want to load a file. vou can press
BREAK to return to the monitor menu.

21

w

A willload a source file from disk into the editor without disturbing
a file that may already be in the editor. The new file will be added on
to the end of the current file. You should be aware that if the editor
contains a complete program, the compiler will stop compiling as
soon as it comes to the first “ END. “ statement it finds, so check your
source code when appending a file. You will be asked for the file name
of the file you wish to append to the current source program. You
may return to the monitor without disk access by pressing BREAK
instead of giving a filename. If you attempt to load a file that is not a
Pascal source file, you will receive the error message BAD FORMAT.

If you wish to add a file from disk in the middle of a current file, you
can either use the INCLUDE procedure or the block move command
in the editor.

W will save an object file to disk. If the current source program has
not been compiled, it will be compiled and then you will be asked to
give a file name. You may abort the procedure by pressing BREAK .
Youmay wish to add the extension /OBJ or /PAS to your file name so
that you can later recognize the file as a complied program.

Saving a program in compiled form will allow you to run the
program in memory that would otherwise be occupied by the editor
and compiler, giving you 9,000 bytes of additional memory during
execution that can be used for variables and workspace. A compiled
program also takes less room on the diskette for storage, and saves
the time it takes to compile it each time you run it.'T%ﬂs may also
make it possible for you to create programs that will run in a 32K
computer, even though they take a 48K computer to compile.

X will allow you to directly execute a compiled object program
from disk. You will be asked to supply a file name, and may abort the
procedure by pressing BREAK . The object file will be loaded right
over portions of the editor and compiler of Pascal 80, saving memory
space but requiring you to reload Pascal 80if you wish to use it again.
For this reason, after your program is executed, you will be returned
to DOS, not to the monitor. If you'attempt to load a file that is not a
Pascal object file, you will receive the error message BAD FORMAT.

22

Compiler Options

Six optional compiler instructions will allow you to route compiler
output to the printer, suppress compiler output (except error messages),
indicate the amount of stack space and symbol table space available
to the compiler on each line, print each byte of compiled object code
as it compiles, zero all variables before execution, and/or verify all
disk file operations.

The option instructions are HARDCOPY, NOLIST, MEMORY,
CODE, ZERO and VERIFY . They may be abbreviated as H,N,M,
C,Zand V, asthe compiler only checks the first letter, However, they
must be in upper case. Simply insert the appropriate instruction or
instructions at the very beginning of your program. The compiler
considers anything found before the keyword PROGRAM to be a
compiler instruction. Instructions can be separated by any valid
delimiter, including space, carriage return and slash, so that H/C/Z is
the same as HARDCOPY CODE ZERO.

The first four options affect the listing of the program, as follows:

HARDCOPY or H sends all listings to the line printer.

NOLIST or Nsuppresses the compiler listing, except that compile
time error messages are still printed.

MEMORY or M adds two more hexadecimal numbers to each
line of compiler output to indicate compiler stack memory and
symbol table memory available. The output will appear in the following
form:

0000 00F4 5C4B PROGRAM; BEGIN END.

The first number (0000) tells that 0 bytes have been compiled before
this line. The second number (00F4) tells that F4 (244 decimal) bytes
of work space are available on the compiler stack. The third number
(5C4B) reveals that there are 5C4B (23627 decimal) bytes of symbol
table space available.

CODE or C tells the compiler to print out each byte of compiled
code as hex numbers in the compiler listing. This is not a complete
listing. In some situations, such as forward jumps, the compiler will
generate dummy place holders to be filled in later with the correct
values. In addition, the pseudocode is self relocating, and relative
addresses generated by the compiler will be replaced by absolute
RAM addresses prior to the execution of each block.

The remaining two compiler options affect the execution of a
program:

VERIFY or V will verify all write operations to disk files. Pascal 80
overrides any verify instruction given under the DOS VERIFY
command.

23

ZERO or Z causes all variables in a program compiled with this
Optionto bescttozero before execution. Ifyoudo not use this option
(or explicitly set your variables in the program), then your variables
will contain what ever is left in memory from yous previous program,

This can lead to strange results, including the printing of garbage
instead of your data,

Pascal keyword FORWARD is a compiler option, FORWARD is used to
declare a procedure or function in advance of its actual appearance,
so that references to the procedure or function will not generate a
compile time error message. Any parameters must be declared at the
time of the FORWARD reference. FORWARD must be preceded and
followed by a semicolon. Here are some examples:

Procedure Anything: FORWARD;
Procedure Interest (Amounf,Ra'e,Days : real); FORWARD;
Function Even (var Number :integer): boolean; FORWARD;

INCLUDE (*$ filename *

The include procedure allows youtoeither compile a whole program
from disk or to compile procedures into a program in the editor,

For example, if you wrote a program so large that there is not
enough room to compile it, you could save it to disk as a source file
and compile it with the include procedure. If it was named
PROGRAM/SRC, you would clear the text editor (with the K
command from the monitor menu) and place this in the editor:

(*$ PROGRAM/SRC *)

Nothing else need be in the editor, though you could include
compiler options. When youreturn to the monitor and select the C,
R, or W options, the program will be compiled from disk instead of
memory.

If you wish to include procedures in your programs, save the
procedure as a source program. See the demo program
COINTOSS/SRC for examples. Here is a simple use:

program IncludeProcedure {Output);
(*3 GOTOXY/SRC *)
begin
cls;
gotoXY(5,6);
write('Here it is.’);
end.

You may wish to have the actual source code in your program,
instead of using include when you create an object file. If so, append
your procedure from disk to the end of your program using the A
option from the monitor menu. Then enter the editor and use the
block move command to place the procedure where required.

.24

Pascal 80 Constants

Pascal 80 has S built in constants, True, False, Minlm (the smal.lest
allowable integer), MaxInt (the largest allowable mteger),.and'l’l. Iln
addition, you can declare your own constants. The following samps
program and sample run will demonstrate defining a constant an

show each of the built in constants.

Program Constants (Oulput);
Const Two = 2.0;
Var Diameter,Circumference : real;
Begin
Writeln(Two);
Writeln(True);
Writeln{False);
Writeln(Minint);
WriteIn{Maxint);
Writeln(Pi);
Diameter:= Two;
Circumference:= Pi * Diameter;
Writeln(Circumference);
End.
Sample Run:

2
TRUE
FALSE
-32768
32767
3.1415296535898
6.2831853071796

25

Variable Types

Pascal 80 allows 6 types of variables, Boolean, Integer, Char, Real,
Realé, and Text. In addition, you may define your own types with the
Type statement. Global variables must be declared at the beginning
of your program, and can be used throughout the program. Local
variables may be declared within a function or procedure, and will
only work within that function. Thus, you can even use the same
variable name in different procedures without conflicts. Variable
names may be any length, and all characters in the name are significant;
Variable NumberSeventy Four and Variable Number Seventy Five will

be recognized as different variables.

Boolean variables are either True or False.

Integer variables must be whole numbers between -32,768 (Minlnr)
and 32,767 (MaxIny).

Char or character variables are letters, numbers, symbols, spaces,
and punctuation marks. To get lower case on the Model I11, you must
press SHIFT 0. If you have lower case in your Model I, TDOS has a
builtin lower case driver, and you can either SHI/FT for lower case or
use SHIFT 0 as in the Model I1I. You can also generate characters
using the CHR function.

Real variables have 14 digit precision, and all calculations, including
logarithmic, trigonometric and arithmetic functions are performed
with 14 digit precision.

Real6 variables, with six digit precision, may be used to save space
inlarge arrays, using four bytes per variable instead of eight. However,
no time is saved, as 14 digit precision is still used in all calculations. In
addition, there are limits to the use of REALG6 variables. Unless they
are members of an array or record, REAL6 variables may not be
passed to a procedure or function as value parameters.

A Text variable is a packed file of characters.

Sample Variable Declarations:

program Variables (Input, Output);

Const Length = 16;

Type Number = Array [0..Length] of Integer;
SetC = Set of char;

: Number;

: Char;

:+ Integer;

: Boolean;

: SetC;

: Real;

: Real6;

: Boolean;

: Array(0..3] of number;

t Array[1..1000] of char,...

Var

-
&~
O XxNZ

x

Fla

~>aQ

26

Functions and Operators

It can be easy to confuse functions and procedures, especially those
thatare built into the language. While both are essentially subroutines,
the distinguishing characteristic of a function is that it returns a single
value. Pascal includes arithmetic and logic operators, including
trigonometric and logarithmic functions, conversion, file handling
and ordinal functions, as well as a few other functions. An operator is
similar to a function, and also returns a single value, but usually is
binary, requiring an operand on either side, as in 2 + 2.

Arithmetic Functions

Arithmetic Operators (+ - / * DIV MOD)
The arithmetic operators include = for addition, - for subtraction, *
for multiplication, / for real division, DIV for integer division, and
MOD to obtain the remainder of an integer division.

program Arithmetic (Output);
var Two, Three : Real;
Four, Five : Integer;
begin
Two := 2.0; Three := 3.0
Four := 4; Five := §5;
write(Two x Three , Four + Five);
write(Two - Three , Four - Five);
write(Two * Three , Four * Five);
write(Two / Three);
write(Four Div Five , Four Mod Five)
end.

ABS, SQR, and SQRT
The ABS function gives the absolute value, SQR gives the square,
and SQRT gives the square root of a number. These functions will
work on Real, Real6, and Integer variables.

program Numbers (Output)

var R: Real;
R6 : Real6;
1: Integer;
begin

R:=.1.414;R6 := 81;
For1:= .3 To 3 Do Writeln{ABS(1));
writeln(Sqr(R));
writeln(SqRIRG));
end.

27

Comparison Operators (=<>< <= > =, >)

The comparison operators are equal =, greater or less than < > ,
lessthan <, less than or equalto <<=, greater than or equalto> =,
and greater than >, They may be used in comparisons of all types of
variables. -

program Compare (Output);
var One,Two : Real;
String : Array[1..6] of Char;
begin
One := 1.0; Two := 2.0; String := 'String’;
write(One = One , One = Two);
write(One <> One , One <> Two);
write(One < Two , Two < One);
write(One <= Two , Two <= One);
write(One >= Two , Two >= One);
write(One > Two , Two > One);
write(String = ‘String’);
if String > 'St’ then
write('The whole is greater than the part)
end.

The Assignment Operator (:=)

In Pascal, the equal sign is a comparison operator, although it is
also used to identify types and assign values to constants. To assign
values to a variable, the assignment operator, a colon followed by an
equal sign, is used. According to the ISO Pascal Standard, spacing
should not matter here. However, Pascal 80 does not allow a space
between the colcn and the equal sign,

VariableName := Valye

Logic Operators (AND OR NOT)

Pascal allows the standard boolean logic operators AND, OR and
NOT. Logic operations should use parentheses not only for syntax,
but also to make the logic clear to human readers.

program Llogic (Output);
begin
writeln((True AND False));
writeln((True OR False));
writeln(NOT(True));
writeln{ Not(True AND False) j
end.

28

Logarithm Functions

EXP and LN

The logarithm functions are EXP(x) to raise the natural logarithm
eto the base x, and LN(x) to represent the natural logof aninteger or
real number x. While Pascal does not have an exponentiation operator,
these functions can be used in combination to do s0, as shown in the
example.

program Powers (Input, Output);
var Power : integer:
Number. Result : real;
begin
readin(Number);
readin(Power);
Result := exp(Power * In{Number));
writeln(Result);
end.

Trigonometric Functions

SIN and COS

The trigonometric functions of Pasca} 80 use radians insteqd of
degrees. This program illustrates converting from degrees to radians,
as well as the use of SIN and COS:

program TrigFunctions (Input, Output);
var Degrees,Minutes,Seconds : integer;
Rodians : real;
Begin
writeln('Designate an angle’);
write('Degrees '};
readin(Degrees);
write(*Minutes ');
readin(Minutes);
write('Seconds ');
readin(Seconds);
Radians := Pi * (Degrees + Minutes/60
+ Seconds/3600) / 180;
writeIn(‘The sine is,'sin(Radians):10:5);
writeln('The cosine is,’cos(Radians):10:5);
end.

29

ARCTAN
ArcTan functions in a similar fashion to the Sin and Cos functions:

program ArcTanDemo (input, Qutput);
var Tongent,Degrees : real;
begin
write(‘What is the Tangent’);
readIn(Tangent);
Degrees := ArcTan(Tangent) * 57.29578;
write('The angle is ',Degrees:6:1,'degrees.’);
end.

ArcSin, ArcCos, and Tan

Standard Pascal does not have dedicated functions for the ArcCosine,
ArcSine, and Tangent, but they may be derived from the existing
functions as follows:

function Tan(x:real):real;
begin

Tan := Sin(x)/ Cos(x)
end;

function ArcSin(x:real):real;
var temp : real;
begin
temp := sqri(1-x*x);
if temp = 0 then
begin
if x<0 then ArcSin := -Pi/2
else ArcSin := Pi/2
end
else ArcSin := ArcTon(x/temp)
end;

function ArcCos(x:real):real;
begin
if x = 0 then ArcCos := Pi/2
else if x>0 then ArcCos := ArcTan(sqri(1-x*x)/x)
else ArcCos ;= ArcTan(sqrt(1-x*x)/x} + Pi
end;

30

Memory Management Functions

PEEK(address)
Peek returns the contents of the address, type integer.

program Example2 (Output);
begin

if (peek(12342) = 195)

then write('This is a Model liI')

else write('This is a Model I')
end.

CALL(address,value)

Call places a value between 0 and 255 into the A register and calls
the address. It returns the contents of the A register, type integer ,
after the call. You must assign a variable to receive the contents of the
A register, as in the example, whether or not you wish to use it.

program Example3;
var Address,Byte, Name : integer;
begin;
Address := 73; Byte := 0
write{'PRESS ANY KEY');
Name := CALl(Address,Byte);
writeln(Chr(Name))
end.

MEM
Mem returns the number of bytes of free memory, type integer.

program Exampled (Output);
var Memory : integer;
begin
Memory := MEM;
write{Memary)
end.

File Handling Functions
INKEY

InKey returns the value (type char) of any key pressed. If no key is
pressed, chr(0) is returned.

program Example] (Input, Oulput);

var Letter ;= Char;

begin
repeat Letter := inkey until ord(letter)> 0;
writeln(Letter)

end.

EOF and EOLN

Functions eof (End of File) and eoln (End of Line) are discussed in
conjunction with the procedures read and readin , and in the File
section of this manual.

31

Ordinal Functions.

ORD, PRED, and SUCC

Integer, boolean and char variables share a common characteristic
not found in real values. Each of them has a defined set of possible
values, and each has a fixed order and may have a predecessor and
successor in that set of possible values. Ord returns the position in the
data set, pred returns the variable preceding the current position in
the data set, and suce returns the next variable in the data set.
Pred(Minlnt) and succ(MaxInt) fall outside the range of integer
variabies and stop the program with error messages.

program Ordinals (Ovlput);
var | : Integer;
C: Char;

begin
I :=.32000; C :='Y’;
writeln(pred(l),succ(l),ord(l));
writeln{pred(C)," *succ(C)," *,ord(C));
wn’!oln(prcd(True),succ(Truc),ord(Truc));
wrihln(prcd(FaIu),succ(FoIsc),ord(False))

end.

CHR

Chr will print a character from its ordinal number in the ASCII
character set.

program Chr;
var ASCIl : integer;
BigChr : char
begin
BigChr := CHR(23);
cls;
write(BigChr);
for ASCII := 32 to 191 do
write(chr(ASClI)," ")
end.

Conversion Functions

ODD, ROUND, and TRUNC

_ Oddis a Boolean function that is True when its argument is an odd
integer. Round will round a rea/ number to the nearest integer value,
Trunc will truncate a rea/ number by dropping the fractional part.

program Numbers (Output);
var N:real
I: integer
begin
R:=5.86;
writeln(round(N),trunc(N));
for1:= 110 10 do
begin
if odd(l) then writeln(l,’ is odd.)
end
end. 32

-

<
<

Set Membership, Union, Difference and Intersection
IN, +,-and *

Inis used to check set membership. The plus sign is used to join two
sets (union), the minus sign to isolate the elements of one set not
common to the other set (difference) and the asterisk to find the
common elements (intersection) of two sets.

program InDemo; (Output)
type 5= set of 1..100;
var A,B,Union,Intersection,Difference : S;
! :integer;
begin
A :=[3.5);
B:=[5.10);
Union := A + B;
Intersection := A * B;
Ditference := A - B;
write('Union set='); for!:= 1 to 100 do
if Iin Union then write(l);
writeln;
write('Intersection set='); for | := 1 to 100 do
if lin Intersection then write(l);
writeln;
write('Difference set=’); forl:= 1 1o 100 do
if Iin Difference then write(l)
end.
Set Comparison Operators

The ordinary relational operators, except for << and>, can be used in
set operations. The operators are:
= set equality; two sets identical
> set inequality; sets are not identical
>= set contains another set
= set is contained by another set

progrom SetCompare;
type JunkFood= set of (Franks,Burgers,Fries,Sodas,Pizza);
var BurgerPrince : JunkFood:;
PizzaPrince : JunkFood;
MacFrank : JunkFood;
begin BurgerPrince := [Burgers..Sodas];
PizzaPrince := [Sodas..Pizza);
MacFrank := [Franks..Sodas];
writeln;
writeln(' Pizza Prince and Burger Prince’);
writeln(*Equality - ', (PizzaPrince= BurgerPrince));
writeln(‘Inequality - ' (PizzaPrince<{ > BurgerPrince));
writein; writeln(' MacFrank and Burger Prince’;
writeln(‘Includes - ',(MacFrank>>= BurgerPrince));
writeln('ls Included - ',(MocFrank< = BurgerPrince)j;
end.

Procedures included in Pascal 80

WRITE and WRITELN
Write and WriteLn print material to a file, including disk files and
the builtin files Qurput (the screen display) and L P(the line printer).
Output is the default device, so that Write(‘This") will print the word
This on the screen. Writeln terminates the printing with an end of
line character (0D hex or 13 decimal). This serves as an eo/n terminator
for a disk file or causes the printer or display to move to the next line.
If you use Write, subsequent Write statements will be appended next
to the first one, with no characters or spaces in between.

To write to a named file, use the Pascal file name as the first
argument in the write statement. Write(LP, Test’) will print the word

Test on the line printer. The use of Write and Writeln in text and
record oriented files is described in the section on files.

Both real and integer expressions are printed with the statement
write(expression:fieldwidth:digits). A fieldwidth of -1 calls for scientific
notation, and the digits parameter will be ignored if present. A field
width of 0 produces the default format, also used if no specification of
parameters is made. The default format prints the number with a
space before it and as many digits after the decimal point as necessary,
up to the maximum precision of the computer, 14 significant figures.
Field width and digits parameters are interpreted modulo 256.

Example of formatted write statements:

program Example (Output);

var Number : real;

begin
Number := 12345.98765
writeIn(Number);
writeln(Number:-1});
writeln(Number:5:0);
writeln(Number:10:0);
writeln{Number:10:2);

end.

Printed output can be frozen by holding the CLEAR key during
execution, or the space bar during compilation.

CLS
CLS clears the screen:
program Exampleé (Output);
begin
cls
end;
34

READ and READLN

Pascal was originally designed to receive input from punch cards,
not a terminal keyboard. Some modifications have been made to the
functions read, readin, eoln, and eof , so that they work differently
when receiving material from the keyboard instead of a disk file. If no
file name is specified, these functions will read from the keyboard:
readfvariable)is the same as read(input,variable). The only difference
between read and readln on keyboard input is that readln moves
down to the next line of the display after receiving input while read
continues at the next character location. This means that if you use
read, you cantype inseveral inputs, separated by a space, on the same
line. In disk files, readln skips to the next EOLN marker, so that any
intervening data is passed over.

Reading text from the keyboard is somewhat clumsy due to the
need to individually place characters in a variable:

program Read] (Input, Output);
var C: Char;
begin
repeat
read(C);
write(C)
until eoln
end.

In this program, you could not use:

while not eoln do read(C)
because the starting condition in a Pascal 80 read is an eoln character.
(See the sample program *COINTOSS/SRC for sample read procedures.)

program Read? (Input, Output);
var C:array[l1..16] of char;
| : integer;
procedure Input;
begin
I:=1+1;
read(C[l});
end;
begin
1:=0;
C:=""%
repeat Input until EOLN;
writeln(C)
end.

35

In Pascal 80, eofis true if and only if the next character to be read is
a special eof marker produced by pressing the CLEAR key. Eof is
printed as a graphics square (hex 8F or decimal 143) and should
appear at the end of a line, after all data. For teaching purposes, this
can be used to simulate a punched card deck and allow you to use
programs written for stream oriented input without conversion.
Likely error messages with READ statements:
READ PAST EOLN - You attempted to read a character after the
special eoln character.
REDO - You attempted to read an illegal character into a numeric
variable (+,-,digits) or a number outside the range (-32768 to 32767)
into an integer variable. You can simply reenter the correct data.

Youcaninterrupta program during an input statement by pressing
the BREAK key. This will produce the message BREAK AT 0000 .

CLOSE

Close without parameters will close all open files. CLOSE(filename)
will clese a specific file. All files are automatically closed when a
program stops execution or if an error occurs.

program Example8 (Fila :’ FILE/DAT:0');
var Fila : text;
Message : Array[1..26) of char;

begin

Message := ‘Example of Closing a File’;

write(FILA ,Message);

close(FILA)
end.

SEEK(expression,filename)

Seek will position the named file to the record whose number is
given by the expression. Records are numbered starting with 0, If
necessary, the file will be reopened before the seek. Seek may only
reference the first 65535 bytes of a file.

Seek(Record,FILEB);

POKE(address,value)

Poke places a value between 0 and 255 intoa memory location. Use
decimal addresses, and subtract 65536 from addresses greater than
32767, as in the Basic POKE instruction. Thus 8000H is -32768 and
9000H 1s -31746, etc:

program Example7;
begin
poke(15365,65)

end;

Poke to an address below 512 is reserved for graphic functions,
explained later under graphics.

36

P

CASE and ELSE

The Case statement is extended in two ways. An ELSE clause may
be included, and will be executed if no other case is satisfied. If no
case is satisfied and there is no else clause, control will fall throughto
the next statement without an error indication.

program DemonstrateCase (Input, Output);
var ¢h : char;
Stop : boolean;
procedure GetChar;
begin
write('How would you answer a yes or no question? ');
read(ch);
writeln;
case ch of
'Y,y : Writeln('You answered yes.');
'S,"s" : Begin
Stop := True;
Wiriteln(*You want to stop.’)
end;
'N,"n’ : Writeln(*You answered no.’)
else writeln('l don't understand youl’)
end
end;
Begin
Stop : = False; repeat GetChar until Stop

. end.

EX(expression) and FP(expression)

, EX returns the exponent of a real number to a variable of type
integer , while FP returns the number as a fraction to that exponent,
type real.

program Example5 (Output);

var Number : real;

begin
Number := 98.123;
write(EX(Number));
write(FP(Number))

end.

37

S

Files
Pascal 80 offers two kinds of files, Text files and record oriented
(File Of ...) files. If your program uses disk files for input or output,
Pascal requires you to declare these files in the Program statement.
Because the rules for Pascal identifiers are different from the rules for
TRS-DOS file specifiers, Pascal 80 allows you to equate a Pascal file
identifier with a TRS-80 file specifier, using the following notation:

program Example (FileA : ' DATAFILE/DAT:1');

IF you choose to use this format, any reference to FileA in your
program will actually identify DATAFILE/DAT on drive 1. If you
wish to stick to Pascal format, you may use this type of file declaration:

program Easier (FILEA,FILEB);

This will give you FILEA and FILEB as the actual TRS-DOS
filenames.

Pascal requires you to also declare your file names as variables,
with the identifier TEXT for text files and FILE OF ... for record
oriented files:

program TextFile (FILA);
var Fila : Text

or

program RecordFile (FileB);
var FileB : file of real

To write an expression to a text file, use the format Write(filename,
expression). In Pascal 80, it is not necessary to explicitly open the file.
Write will automatically open the file, and will even create it if it does
not exist on the disk. A write statement always adds text at the end of
afile. It will advance to the end of the file before writing. You can use
fieldwidth and digit parameters in writing to a file in the same way
that you use them on the screen. (See Write in the Function section.)
It is also permissable to write several expressions in the
same Write statement: '

Write(filename,expression],expression2);
Writeln(filename,expression) will work the same as Write, except

that an end of line marker (EOLN, ASCII 13, or Carriage Return)
will be written at the end of the expression.

38

Read(filename, variable) reads a number from the file into a numeric
variable, or a single character into a character variable. If the file
exists but is not open, Pascal 80 will open it and starts reading at the
beginning. Subsequent read statements will continue where the previous
read statement left off.

Two error messages are likely when reading files. A FILE NOT
FOUND error means that you tried to read a file that is not on that
disk. A MISMATCH error occurs if you mix types, and try to read
letters into a numeric variable or a real number into an integer
variable.

Readin(filename,expression) will read a number or one character
from a file and then skip to the next end of line marker.

Reset(filename) closes a file and reopens it at the beginning. The
next read statement would read the first character or number, but a
write statement would skip to the end of the file. If a file does not exist
on a disk, a RESET statement will create the file.

Close(filename) will close an individual file. Close without a filename
will close all open files. Files will also close automatically if an error
occurs or the program stops execution.

ReWrite(filename) will kill a file and release the space on the
diskette, then open a new, empty file with the same name.

EOF(filename) is True if the file is positioned at an end-of-file
marker, 8F hexadecimal. If the file is closed, EOF will open it, and
return a False unless it is an empty file.

EOLN(filename) is True if the file is positioned at an end of line
marker, 0D hexadecimal. If the file is closed, it will be opened.

Pascal 80 also lets you use read and write with non-text files. The
syntax is:

Write(filename,variable,variable...);
Read(filename,variable,variable...);

Both the file name and the variables must be of the same type. If we
have the following declarations:

type BigOne = array[1..50] of real;
var FileA : file of BigOne;
VarName : BigOne;
NOTE: Model I users will have 10 substitute (. for [and .)for]

This will set up the file to allow us to write the variable to the file with:
write(FileA,VarName);

The Write statement will open or create the file if necessary.
Subsequent Write statements will add to the end of the file.

Read(filename,variable) will read the variable from the file. The
file will be opened if necessary, but will not be created if it does not
exist. The file pointer is advanced after each read.

39

S eek(expression,filename) will position the file to the record whose
number is given by the expression. The first record in each file is
numbered 0 and the second record is record 1. If necessary, the file
will be opened before the seek. I is not possible to seek beyond byte
65,535 in a file. '

Reset(filename) may be used with record-oriented files and js
equivalent to Seek(0,filename),

ReWrite(filename) and C loseffilename) work in the same fashion
on record-oriented files as they do on text files.

EOLN, EOF, Writeln, and ReadIn are undefined in record oriented
files. Attempting to read beyond the end of a file will give undefined
results.

Notice the difference between record-oriented files and text files in
the functioning of the write function. In a text file, data is always
added at the end, but in a non-text file reading and writing occur at
the same place, and the file pointer must be set by a Seek or Reset
statement. This allows you to update afile by overwriting the individual
variable,

It is possible to close a file and reopen it as a different type. For
example, you might want to read a rexs file as a file of char.

Your Pascal 80 diskette contains programs with the filenames
MAILIST/SRC and CREATE/SRC to demonstrate text file input
and output. You may wish to load them into the editor and examine
them to see how they work.

Utilities to Pack and Unpack Files

All Pascal 80 source files are stored in a compressed manner.
Wherever blank space appears on the screen in a program listing, the
disk file will store a single byte of code to indicate the number of
spaces. (The code is 80 Hex plus the number of spaces.) While this
saves space on disk and in memory, it does make it difficult to use
Pascal 80 with another editor, such as Radio Shack’s excellent Scripsit,
or to transfer Pascal 80 programs to other computers and other
Pascal compilers.

To overcome this problem, two machine language utilities are
provided on your Pascal 80 disk. ASCII/CMD will convert a Pascal
80 file to an ASCII file. TEXT/CMD will convert an ASClIIfiletoa
Pascal 80 file. The syntax for either is quite simple. You must first
save the source file to disk. Exit Pascal 80 using the Q option from the
monitor menu and type:

ASCll filenamel TO filename2 (or)

TEXT filenamel TO filename2

Thus, the command:

ASCll YOURPROG/SRC:0 TO YOURPROG/ASC:]

would convert the Pascal 80 file YOURPROG/SRC on drive Otoan
ASCII file on drive |,

40

’

R SR

GRAPHICS
There are three different wavs to produce graphics in Pasca] §0.

Youcanuse the POKE procedure to directly place graphics characters
in screen memory, which runs from addresses 15360 to 16383 on the
TRS-80. You can use the CHR function to write graphics characters
to the screen. The disk contains procedures that you can INCLUDE
in your programs to give you the equivalent of Radio Shack Basic's
SET,RESET, and POINT graphics. The program COINTOSS/SRC
on your disk will demonstrate these programs, which are explained
later.
Progrom GrafDemo;
Begin

CLS;

Write(* *, CHR(141));

Poke(15900,191);
End.

Graphics and Random number extensions
PSET, PRESET, POINT, RND(N), and RNDK.

These functions are equivalent to the Radio Shack Basic
commands SET, RESE_T, POINT, RND(N), and RND(0). Sampie

RND(N)

This procedure will return a pseudo-random integer result between
land N. The procedure RANDOM/SRC on the disk shows how to
use both Rnd(N) and RndR.

RNDR

While Rnd(N) produces an integer result, RndR will produce a
realnumber between O and 1. RNDR does not take an argument, The
new random seed is produced as follows:

(477 * Old seed x 3461; MOD 32768

Procedures pSet. pReset and Point areimplemented as sub functions
of the Poke procedure. Since it is not possible to change ROM with
the poke command, pokes tolocations below 512 have been reserved
for graphics. From Poke(0,0) to Poke(127.47) functions as Set with
the same argument. For Reset, use Poke(horizontal position +] 2§,
vertical position). For point, use Poke(horizontal position + 256.
vertical position), then Peek(21458) for the result of zero if the point
is off and non-zero for on. These functions are demonstrated on the
file GRAPHIC . SRC.

4]

Creating Command Files

The author package on your Pascal disk will allow you to create
files that will execute directly from DOS. These files will appeartothe
end user as if they were machine language files, and you do not have
to payany royalty if you seli these programs. (Note: See the conditions
under licensing in the front of the manual.)

The author package consists of two parts, a machine language
program called AUTHCODE/CMD and a Pascidl 80 source file
titlted AUTHOR /SRC . To use the author package follow these steps:
1) Create your program using Pascal 80.

2) Compileyour program and save it to disk using the W option from
the monitor menu.
3) Return to DOS, type AUTHCODE , and press ENTER .
4) Return to Pascal 80 by typing PASCAL and pressing ENTER,
5) Using the L option, Load AUTHOR/SRC.
6) Press R to compile and run AUTHOR/SRC.
7) Follow the instructions on the screen. You will be asked:
a) If you need to load AUTHCODE/CMD
b) If you have compiled your file
¢) What name you wish to use for your new file
8) If youanswer N then Y and give a filename that is not currently on
the disk, you will then be asked if you are ready to continue.

Answer Y.

9) Now you will receive further instructions. Read them and press

ENTER.

10) This will return you to the monitor menu. Now press X and give
the filename of your Pascal object file. It will be loaded, then the
program will automatically write your file to disk as a command
file.

1) When this is done, you will be returned to DOS and may now test
your program. If your program was called CHESS/CMD, you
could run it by typing CHESS and pressing ENTER.

WARNING: Always test your command file from a
cold start on a fresh disk before assuming it works.

42

Demonstration Programs.

Your diskette includes the utility programs TEXT/CMD and
ASCII/CMD, a set of graphics and random number extensions

source code procedures under the names GRAPHIC/SRC and
RANDOM/SRC, and an additional procedure for print formatting
under the filename GOTOXY /SRC. There are also four demonstration
programs, CREATE/SRC, MAILIST/SRC, PRIME/SRC, and
COINTOSS/SRC.

PRIME/SRC is a sample program that will find all prime numbers
between | and 20,000 using the “Sieve of Erasthenes. It demonstrates
the effective use of an array and shows the power of Pascal 80.

COINTOSS/SRCisaprogram created to demonstrate INCLUDE,
RND(N), RNDR, PSET, PRESET, POINT, and GOTOXY. The
program will continuously simulate flipping a coin ten times and
graph the number of heads obtained on an axis from 1 to 10. When
one bar of the graph (almost inevitably the bar for 5 Heads) reaches
the top of the screen, the graph is rescaled.

The programs CREATE/SRC and MAILIST,;SRC form a naive
mailing list application meant as a demonstration of file handling
techniques. You must first create a dummy file with CREATE, then
youcanrun MAILIST to tise the application. You have the following
commands, which will be displayed at the bottom of the screen while
the program is running;

T Get the first (Top) record.

+ Get the next record.

- Get the previous record.

L Get the Last record.

F Search for (Find) a last name.

N Add a New record.

D Delete current record.

H Print (Hardcopy) the current record.

P Print the full list.

Q Return (Quit) to the monitor or DOS.

This mailing list was intended only to demonstrate file handling,
and no representation is made as to its suitability for any particular
purpose. However, feel free to tailor it to your own applications.

43

COMPILATION ERROR MESSAGES

The compiler will stop when it finds an error, with an arrow
pointing to the place where it discovered a problem. This may be in
the line after the error (for example, if a semicoloh is missing after a
statement). A missing End may not be discovered for several lines.

BAD OPTION
Pascal-80 assumes that anything which you type before the keyword
Programis aninstruction to the compiler; see the section on Compiler
Options .

SYNTAX ERROR

Something’s wrong, but the compiler doesn’t know what. This
¢rror may mean that you left out a semicolon between statements or
tried to begin a number with a decimal point (Pascal requires 0.2, not
2).

UNDECLARED

An identifier (usually a variable) or a label hasn’t been declared;
Pascal requires that you declare all variables (in a var statement)
before you use them. Array index variables used in a record must be
global variables in Pascal 80; Local variables will generate this message.

DUPLICATE

Youdeclared a name twice in the same block. This may also mean
that you used the same name in both a record and elsewhere in your
program, as Pascal 80 will not allow this. Or you tried to declare a
filename with the same name as one of the standard identifiers
(Pascal does allow you to redefine these standard identifiers, but not
as filenames.)

BAD RANGE

An array or subrange has been declared with an illogical range
(such as 10..1).

REAL OVERFLOW

A real constant has a magnitude outside the permitted range of
IE-h3 10 1E+63.

BAD TYPE
Anillegal type declaration. Note, for example, that Pascal requires
that parameters be of a predefined type: type Ran = 1..10; procedure
Test {par:Ranj is OK, but not procedure Test (par:1..10) . Note also

that Pascal-80 does not support certain structures. such as File of File.

44

OUT OF MEM.

Usually means that the compiler has run out of symbol table space:
you can use the MMEMORY compiler option to keep track of how
much space is left. This can also occur if the compiler runs out of
space for storing labels (maximum of 63) or disk filespecs (maximum
of 12). Also, a program may not contain more than 252 different
scalar types, and a scalar may not have more than 255 elements.
Occasionally a short but deeply-nested program may cause the compiler
to run out of stack space before it runs out of symbol table space. If
this happens, it will print OUT OF MEM »and then immediately assign
more space to the stack (at the expense of the symboltable) and start
the compilation over again. The additional stack space will continue
to be available in future compilations until you reload the system.

MISMATCH

An attempt to perform an operation or assignment with elements
of incompatible types (such as ‘X'+2). Note that Pascal allows integers
to be assigned to real variables, but (unlike BASIC)itdoes not allow
real values to be assigned to integer variables (use the trunc fu nction).
Incidentally, -32768 is of type real under the rules of Pascal syntax
(it’s the negative of 32768, which is a real constant), and cannot
therefore be assigned to an integer variable. A mismatch can also
result from incompatible file operations, such as EOF(Output) or an
attempt to reference a file name which has not been declared in a var
statement (since the compiler knows the name only as a filespec, and
not as a Pascal identifier).

UNRESOLVED GOTO
The destination of a goto statement doesn’t existin the program. It
is always printed at the very end of compilation. since the compiler
keeps hoping that the label will turn up...

STRUCTURE TOO BIG

An attempt to declare a set with more than 256 members (or with
integers outside the range 0..255). Or an attempt to allocate more
than 65535 bytes of storage to a block (usuallvin the form ofarravs).
Or a structure that is too deepiv-nested tor the compiler to handle
(Array of Array of Array...to a depth of about 30). Or an attempt to
passanarray {or record) with more than 510 bytes as a value parameter
(this restriction does not apply to variable parameters).

BREAK
You stopped the compilation by holding down the BREAK kev.

45

RUN-TIME ERROR MESSAGES

'Whe'n a run-time error occurs, execution stops, and the system
prints (in hex) the location where the error occurred. This location
corresponds to the number printed at the left of each line during
compilation, and allows you to find the approximate location of the
error.

Some run-time errors do not need much explanation: OUT OF
MEM., DIV. BY 0, DISK ERROR, BEYOND EOF . Less self-
explanatory errors are:

BAD RANGE

A subscript of an array, or the value of a subrange-type variable is
outside the range which you specified in your program.

REAL OVERFLOW

The result of a computation has a magnitude outside the range
1E-64 <= N < 1E+63 (this includes both underflow and overflow
conditions).

INT. OVERFLOW

The result of ainteger operation is outside the range -32;768 <=n<
=32767. Note that Pascal (unlike BASIC) does not automatically
convert a result to real if it is too large.

MISMATCH

Aninvalid character was found while attempting toread a number
fro§n a disk file, or a non-integer was found when trying to read into
an integer variable. If this happens when reading a number from the
keyboard (file INPUT), the message REDO is printed.

STRUCTURE T0O BIG

An attempt to create a set at run-time with more than 256 elements:
fqr example (.A,.B), if A=1 and B=300, or an attempt to assign a
bigger set to a set variable than that variable was declared to have
room for. Since space is allocated to sets in multiples of 16 elements, a

setdeclared as 0..10 may actually accept elements upto 15 without an
error,

ILLEGAL JUMP
It is not lpgal to jump (with goto) into a for loop or case statement
or into an inactive procedure or function. In general, you can jump
from a deeper nesting level to a shallower level (out of a for loop, for
example), but you cannot jump deeper. If you jump out of a function
without assigning a value to the function, the value 0 will be returned.
Pascal 80 will allow you to jump from inside one for loop to another

one at the same nesting level, but the value of the control variable will
be undefined. .

46

Upgrade History

Pascal 80 was originally released by Ramware, a division of Soft-
Side magazine, in early 1981. The original version worked only on the
TRS-80 Model I under TRS-DOS 2.3, and was reviewed in the
December 1981 issue of Byte magazine,

Inearly 1982, the program was extensively revised by New Classics
Software. New features added the Include faciity from UCSD Pascal,
compatibility with all TRS-DOS replaement operating systems on
both the model I and the model III, lower case support in printed
output, utilities to convert files between packed and ASCII formats, a
new editor with character insert and delete, protected memory for
machine language programs, and a new manual. This version was
released at the West Coast Computer Faire on March 22, 1982.

Three bugs were found in the new version. There was a conflict
between CLS and file handling that caused files to crash after CLS
was executed. The Seek command failed to read into the buffer after
finding information. The ZERO compiler option zeroed all high
memory, including protected memory. These problems were fixed,
and two enhancements were made. The first enhancement was a
modification to the RECORD command to allow declarations like
SEX: (Male,Female) within a record. This introduced a new problem
that still exists in the program. Record field names are no longer

. completely local to the Record, and cannot be duplicated in other

parts of the program. The second enhancement was the addition of
extra TRS-80 graphics routines and random number functions,

These changes became revision A, released on March 28, 1982.

One more bug was found later. The utility program TEXT/CMD
was found to overflow the stack and crash. Both TEXT and ASCII
were changed to create their own stack instead of using the DOS
stack. Then further enhancements were made. Then two new functions
were added to the editor, for block moves and printing source programs,
to form Revision C, released April 24, 1982.

Revision D, Released June 1, 1982, added support for lower case in
compiler options and changed the cursor choice option routines.
We would also like to either support pointer variables, or at least
simulate them so that schools could teach the use of pointers using
Pascal 80. Any user suggestions, or better yet, completed modifications
for Pascal 80, are eagerly solicited.

47

Using Pascal 80 to Teach Programming

Pascal was originally designed as a language to teach computer
programming. Pascal 80 updates standard Pascal from the card
reader and teletype era to the age of keyboards and video displays.
Pascal 80 was written, revised, and documented by professional
educators specifically for use in teaching computer literacy in high
schools, technical schools, and colleges.

Currently, many schools are using Basic to teach programming,.
This is largely a result of the limited memory that was available on
early microcomputers. Since a general purpose Basic could be put in
4K of ROM and used with 4K of RA M, most early microcomputers
came with a Basic interpreter. Pascal requires significantly more
computer resources. However, Basic has many disadvantages as a
teaching language. Lacking a choice of control structures similar to
Pascal’s while ... doand repeat ... until, Basicis not suited to top down
programming. This frequently leads to abuse of GOTO statements
and other bad habits that can actually hinder future success in
programming. The line numbers in Basic reduce readability and
introduce added complexity to the language. The lack of support for
pretty printing in most Basic implementations results in programs
even harder to understand. The lack of named procedures and functions,
as well as the limitations on significant characters in variable names,
also create obstacles to learning. Basic lacks the sophistication of
modern programming languages, missing features such as user defined
types, structured variables and dynamic pointers. For these reasons,
schools should probably teach Pascal instead of Basic, not as a
second or optional language.

One of the major obstacles in learning a compiled language is the
time delay introduced by disk access. An illustration of the delay is
the process of writing a short programon the IBM personal computer
with IBM Pascal. Afterloadinga text editor and writing the program,
the programmer saves it as a disk file, then inserts and runs the first
pass compiler. This requires answering several questions. Then this
disk is removed and the second pass compiler is inserted and executed.
Then this disk is removed and the disk with the Linkerisinserted and
run, requiring the programmer to answer several more questions,
Then the student can switch back to the second drive and run the
program. Altogether, it takes § disks, the execution of § programs,
answering a dozen questions, and the creation of 6 disk files to get

(f'\ 48

even a tiny program to run. Students should not have to suffer
through this. They should receive immediate correction when they
make a mistake and immediate reinforcement when they do well.
Pascal 80 was written to compile and run without disk access in order
to allow students to spend their class time writing programs and
correcting their errors, nut saving and executing disk files. In Pasc .l
80, plain English error messages, with an arrow pointing to the
location where the error was discovered, provide immediate correction,
Since compilation stops when an error is discovered, students deal
with one error at a time. In seconds, they can return to the editor,
(coming automatically to the spot where the error was located) fix the
error, and return to compilation.

Persons teaching Advanced Placement Pascal on the high school
level will want to use Pascal 80 for at least the first half of the course,
and then switch to a different version of the language so that students
learn to cope with more primitive editors and more involved disk
access. Pascal 80 also does not include pointer variables, which are
mandated by the colleges for Advanced Placement Pascal courses. It
is suggested that the following commands and topics be reserved for
the last part of the course, and taught using another version of Pascal:

Pointer variables, new and dispose
Variant records, with
get and put

Particular attention should be given in an introductory course ;r;
programming to portability, modulanty, meaningful names fo;
procedures. functions, and variables, stepwise refinement, top-dow.
and bottom-up programming, localization and the avoidance of side
effects, testing of small parts of a program with boundary conditions,
and the elements of pretty printing. including use of lower casc
comments. and the identification of blocks by matching indentatatior,.

The extensions in Pascal %0, including seek, cls, peek. poke. includ.
inkey, fp, ex. realt vanables. and the gutoxyv. random. and grapn: .
routines should be avoiaed in class. Standard Pascal does not hus ¢
random access files, so instruction should concentrate on text files
Some teachers may wish to deny students access to this marual in
order to keep non standard functions from appearing in student
programs If file handling is taught with Pascal 80, the students will
have to learn to use close and non standard uses of read and write.

49

Reviews of Books on Pascal

The following books were consulted in preparing this manual and
in teaching Pascal 80 to high school computer science teachers. The
books are listed in order of my own estimate of their value.

By far the most helpful book consulted was Oh! Pascal! by Doug
Cooperand Michael Clancy of the University of California at Berkeley.
The book is well written, has clear explanations, and great care has
been taken in the layout of the book to insert examples at the right
place in the text and highlight important features. The authors see
programming as a separate discipline, not as a branch of mathematics,
so mathematical examples are kept to a minimum. Every chapter has
a section on programming technique, called Ahribugging and
Debugging. These sections are extremely valuable. The program
examples are presented in upper and lower case, and are very readable.
Many example programs, both short and long, are given. There are
self test questions for each chapter, with answers in the back of the
book, as well as additional exercises without answers given. Many of
the exercises are quite demanding, and the reading level is fairly high,
probably beyond high school students. The use of Pascal in an
interactive environment is taken for granted, making the book
exceptionally useful with microcomputers. The book sells for $16,
and is published by Norton.

Programming in Pascal by Peter Grogono, seems to be the standard
college textbook on Pascal. It is clearly written and well organized,
and is organized around a number of large sample programs. Grogono
concentrates on the original mainframe implementation of Pascal.
This is the book recommended by Phelps Gates, the author of Pascal
80. ‘

Pascal User Manual and Report , by Kathleen Jensen and Niklaus
Wirth, is the original sourcebook and official bible of Pascal. It gives
a clear and brief explanation of the features of Standard Pascal, and
is a good book for experienced programmers who wish to learn the
language quickly. However, as the title indicates, it is a report on the
language, not a tutorial.

50

[T S

Introduction to Pascal by Rodnay Zaks is a competent, clearly
written tutorial, though unexciting. It does tend to confuse the reader
by mixing material on UCSD Pascal in the same chapters as Standard
Pascal, but UCSD material is clearly identified for those who wish to
learn Standard Pascal first. Although the programs are in upper case
only, bold face is used to make Pascal keywords stand out and the
book is well laid out, so readability does not suffer.

While this book is still at an elevated reading level, an average (but
not below average) high school sophmore should be able to understand
it. If I had to select one of the books listed here to teach programming
in high school, I would reluctantly choose this text, though I would
want to use the supplementary material and some of the exercises
from Oh! Pascal! as well. The publisher is Sybex, the price $14.95

Pascal, An Introduction to Methodical Programming , by W.
Findlay and D.A. Watt of the University of Glasgow, is a college text.
The programs are given in upper case only, making them difficult to
read. Thereare also alot of irritating forward and backward references
to program examples. While this book is much less valuable than Oh!
Pascal!, it may be useful to those wishing a second reference to clarify
points they don’t understand from the other book. The section on
Pointers is particularly good. Emphasis is placed on syntax diagrams,
which are fairly well done. Like Oh! Pascal!, this text is not
mathematically oriented. The publisher is Computer Science Press in
Rockville, Maryland.

Foundations of Programming with Pascal , by Lawrie Moore of
the University of London, is an expensive (about $50) and complex
text with long sections on number systems, base conversion, electrical
examples of logic gates, and digressions into topics such as Backus
Naur form and Venn Diagrams. It is more mathematically oriented
than the other books, and even includes a chapter on Using an
Efficient Method of Integration.

Program examples are given in upper and lower case, and are quite
readable. This is a text for well educated, mathematically oriented
academics who also want a grounding in the jargon of the high
priesthood of computer science.

51

For those interested in moving on to UCSD Pascal, the book by
Rodnay Zaks above will be a good start. Another useful book is
Beginner’s Guide to the UCSD Pascal System by Kenneth Bowles,
from Byte Books. The material is decent, although the layout of the
book is terrible, the programs are in all upper case, and many of the
illustrations are mediocre black and white photographs of video
display screens.

Those with Apple computers will find Apple Pascal, a hands on
approach , by Arthur Luermann and Herbert Peckham, a useful
orientation to Apple Pascal, after they learn standard Pascal. This is
not a good book for classroom use, as it concentrates too much on the
specific features of Apple Pascal to the confusion of Standard Pascal.

In every race, someone has to finish last. The Pascal Primer by
David Fox and Mitchell Waite, tries to be humorous and cute, but
only succeeds in being glib and superficial. The book is not all bad,
and is often lucid and readable, but the other texts listed above do a
better job. The Pascal Primer concentrates on UCSD Pascal, with
special emphasis on the Apple.

1also have The Pascal Handbook by Jacques Tiberghien, published
by Sybex. When I received the book, it seemed a good idea to have a
reference listing all the Pascal Commands with syntax diagrams and
sample programs. Despite the fact that it sits on a shelf within reach
of my Apple and both TRS-80s, I never reach for it. The few times I
tried to use it, months ago, it just didn’t have the information I
needed. I suggest using the index in Oh! Pascal! and looking up
commands that way.

52

Chaining program files under Pascal 80

We cannot guarantee that it will work with all files. In fact, we have
had problems with single character file names. However, we ha_xvc had
success with it in continuous chaining of object files stored on diskette.

This procedure is on your disk as CHAIN/SRC:

(* This module requires the following type decloration
at the beginning of the program:
type Filename = array [1..23] of char;)
procedure Chain (a:filename);
var i,j : integer;
good : set of chor;
begin
good := [A VTPV, T+ a V0 LYY
i:=21248;
(* 5300H = DCB *)
j:=1;
while ((a[j] in good) and (j<24)) do
begin
if afj]in ['a L'z] then poke(i,ord(a[j])-32) else poke(i,ord(alj]));
im=ith =l
end;
poke(i,ord('$"));
i 1= 22206; poke(i,24); i :=i+1; (* notime *)
poke(i,13);
i := 28096; poke(i,62); i :=i+1; (* potch end *)
poke(i,1); i := i+1; poke(i,50);
i:= i+1; poke(i,88); i := i+1;
poke(i,112); i := i+1; poke(i,24);
i:=i+; poke(i,12);
i :® 28393; poke(i,125); (* patch end *)
i 1= 28247; poke(i,195); i :x i+1 (* patch abort *)
poke(i,232); i := i+1; poke(i,110);

i:® 31724; poke(i,62); (* X title *)
i:xi+1; poke(i,124);
i:= call(31723,0)
end;
53

Hereis a sample program that uses the CHAIN procedure correctly:

program Test;
type filename = array[1..23] of char;
(*$ CHAIN/SRC *)

begin

writeln(*Which program do you wish to run (A/B/C) ?%);

repeat ¢ := inkey until ord(c) <> 0;

case ¢ of 'A’: chain('PROGA/O8J’);

'B": chain('PROGB/0OBJ');
'C": chain(*PROGC/ OBJ');
end
end.

Only p-code files created by Pascal 80's Write command may be
called as chain files. However, the calling program may be a text
program or a command program created by the author package.
Programs called by chain can themselves contain further chain
commands. Therefore, if you are creating a turnkey application with
Pascal 80, create a startup command file and set AUTO to execute it.
Store the remainder of your files as Pascal 80 object files and call
them as needed from each other.

54

Control Key Problems

On certain early Model I and Model I1I computers, the ROM does
not implement the shift down arrow as a control key. Since this
makes it impossible to use the editor, it is necessary to supply a
separate keyboard driver. Some disk operating systems, including
LDOS and DOS-Plus, have keyboard drivers that work. The disk
also contains a Model 1II keyboard driver under the filename
CTRLKEY/CMD. To use it, type CTRLKEY ENTER from DOS
before typing PASCAL. It will replace the other keyboard driver in
memory. This may disable some functions such as the JKL screen
print routine in NewDOS.

Model III users who wish to use the new keyboard driver can

construct a BUILD file to load the driver automatically and then call

Pascal. To do this, from DOS, type:
BUILD START ENTER

-when you get the prompt, type:

CTRLKEY ENTER
at the next prompt, type:
PASCAL ENTER

at the next prompt, press BREAK.
When you return to S, type:
AUTO DO START ENTER
Now, all you will have to do to load the driver and Pascal is press the
reset key.

The control key routine loads into memory locations FEAO to
FFFF, and therefore requires a 48K Model I1I computer,

55

e

Control Key Problems

On certain early Model I and Model I1I computers, the ROM does
not implement the shift down arrow as a control key. Since this
makes it impossible to use the editor, it is necessary to supply a
separate keyboard driver. Some disk operating systems, including
LDOS and DOS-Pius, have keyboard drivers that work. The disk
also contains a Model III keyboard driver under the filename
CTRLKEY/CMD. To use it, type CTRLKEY ENTER from DOS
before typing PASCAL. It will replace the other keyboard driver in
memory. This may disable some functions such as the JKL screen
print routine in NewDOS.

Model I1I users who wish to use the new keyboard driver can
construct a BUILD file to load the driver automatically and then call
Pascal. To do this, from DOS, type:

BUILD START ENTER

when you get the prompt, type:

CTRLKEY ENTER

at the next prompt, type:

PASCAL ENTER

at the next prompt, press BREAK.

When you return to S, type:

AUTO DO START ENTER

Now, all you will have to do to load the driver and Pascal is press the
reset key.

The control key routine loads into memory locations FEAO to
FFFF, and therefore requires a 48K Model III computer.

55

Table of Contents

Registration ...t page 4
Tableof Contents.................coooiviiiinii i, page 5
Short description of Pascal 80.............................. page 6

— Beginner’s Section
Getting Startedociii page 7

Writing a Sample Program...................c.oooiviin. page 9
Introduction to the Editor....................... Ferrseei, page 11
Saving and Loading Programscc.vvuu.. .. page 14
Limitations of Pascal 80........................oovien.an, page 16
Extensions to Pascal 80coiviniininn, page 16
EDITOR functionscoooviiinninainn . page 19
MONITOR functionsccooveeiiinniinniinnn, page 20
COMPILER OptONSoovti it page 23
CONSTANTS ... page 25
VARIABLEtypescoivviiiiiiiiii i, page 26
FUNCTIONSo page 27
PROCEDURES ..., page 34
FFLES .. page 38
File conversion to ASCIL..............ooiiiiiin i, page 40
Graphics ..o page 41
Creating CMDfiles............ooooiiviiiiii i, page 42
Demonstration programs............c..oeeeevvunniennnnnns. page 43
Compiler ERROR messagesc.oveevvnnennnn. page 44
Run-time ERROR messages page 45
Revision History...........ooooiiiiei i, page 47
Using Pascal 80 to Teach Programming.................... page 48
Reviews of Pascal BooKSocovviuiiiiniiniinn, page 50
Chaining files with Pascal 80cccccviivinnnn. page 53
Index ... page 61

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf

